Hypoplastic Left Heart Syndrome: Interdigitating Arch Reconstruction

AATS Congenital Skills Course
Toronto 2010

Glen Van Arsdell MD
Head, Cardiovascular Surgery
Hospital for Sick Children, Toronto

Professor of Surgery
University of Toronto
CIT in Cardiovascular Research
HLHS Arch

- Anatomic Goals for Arch Reconstruction
 - Unobstructed Arch and Head Vessels
 - Just “big” enough
 - Good Coronary Blood Flow
 - Adequate room for Left Pulmonary Artery
 - Adequate room for Trachea and left Bronchus
 - Competent neo-aortic Valve
 - Laminar tapered reconstruction

- Reconstruction in Safe amount of Time
Why is it Important?

• Norwood Autopsy Data
• 122 Autopsies – ’80-’95

 – Coronary perfusion - 27%
 – Excessive pulmonary flow – 17%
 – Neo- aortic obstruction – 14%
 – RV failure – 13%

Bartram, Grunenfelder, Van Praagh Ann Thorac Surg 1997;64:1795
Arch Reconstruction Techniques

- Classic
- Coarctation Resection
 - Autologous
 - Interdigitating
- Other
Classic Arch Reconstruction

Up to 1/3 can have recoarctation

Autologous - Mee, Brawn

Autologous - Mee, Brawn
Autologous and Interdigitating techniques

Residual Ductal Ring

Arch Patch

Patch

Split Potential Residual Ductal Tissue

Side to Side V Anastomosis Aorta and PA

Burkhart H. M. ….Van Arsdell et al.; J TCS 2005;130:61-65
Incisions Details

Backwall incision to 1st intercostal

Anterolateral Incision ≥ diameter of descending aorta
Arch Stenosis

Autologous (14%)

Classic Arch (33%)

“Interdigitating” (0%)

P=0.01

Over 100 Pts (<1%)

Burkhart H. M.Van Arsdell et al.; JTCS 2005;130:61-65
AortoPulmonary Window Size and Shunt Position

Favourable

Unfavourable
Arch Measurements

| | Classic
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=26</td>
</tr>
<tr>
<td>Asc Ao</td>
<td>18.5</td>
</tr>
<tr>
<td>T Arch</td>
<td>15.3</td>
</tr>
<tr>
<td>Arch at SubClvn</td>
<td>11.2</td>
</tr>
<tr>
<td>Distal arch Anastamosis</td>
<td>7.2</td>
</tr>
<tr>
<td>Desc Ao</td>
<td>10.6</td>
</tr>
</tbody>
</table>
| | Autologous
| | n=20 |
| Asc Ao | 14.9 |
| T Arch | 11.8 |
| Arch at SubClvn | 9.6 |
| Distal arch Anastamosis | 7.3 |
| Desc Ao | 8.1 |
| | Interdigitating
| | n=33 |
| Asc Ao | 16.8 |
| T Arch | 14.6 |
| Arch at SubClvn | 11.1 |
| Distal arch Anastamosis | 8.4 |
| Desc Ao | 7.8 |
| | p |
| Asc Ao | .0086 |
| T Arch | .0029 |
| Arch at SubClvn | .0493 |
| Distal arch Anastamosis | .088 |
| Desc Ao | <0.0007 |
Interdigitating Arch Reconstruction
Arch Appearance – HLHS

Favourable

Unfavourable
V Anastamosis
Small Ascending Aorta
Arch Appearance – Tricuspid Atresia/TGA

Favourable

Unfavourable
Late Problems

11 cm Ascending Aorta

Stented Coarctation
Autologous and Interdigitating techniques

Residual Ductal Ring

Arch Patch

Patch

Split Potential Residual Ductal Tissue

Side to Side V Anastomosis Aorta and PA

Burkhart H. M.Van Arsdell et al.; J TCS 2005;130:61-65
Summary

Resect Coarctation

Leave Room for LPA

Incisions across the ductal ring reduce ‘residual’ ductal issues

<1% re-coarctation