Supravalvar Aortic Stenosis in Infants

Max B. Mitchell, MD

The Children’s Hospital Heart Institute
Professor of Surgery
University of Colorado Denver Health Science Center
Denver, CO
No disclosures
Supravalvar Aortic Stenosis

- Elastin arteriopathy
- 7q11:23 deletion
- Patient types
 - Williams-Beuren
 - Familial
 - Sporadic
Age and Early Outcome

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>N</th>
<th>Age*</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaushal</td>
<td>2010</td>
<td>20</td>
<td>3.6</td>
<td>10 mo., Diffuse type, Severe PA disease</td>
</tr>
<tr>
<td>Scott</td>
<td>2009</td>
<td>25</td>
<td>4.7</td>
<td>14 mo., Diffuse type, Cath lab arrest</td>
</tr>
<tr>
<td>Metton</td>
<td>2009</td>
<td>34</td>
<td>5.5</td>
<td>3 mo., Diffuse type, Left coronary obstruction</td>
</tr>
<tr>
<td>Hickey</td>
<td>2008</td>
<td>47</td>
<td>4.3</td>
<td>2 deaths, ages not specified</td>
</tr>
<tr>
<td>Brown</td>
<td>2002</td>
<td>101</td>
<td>6.1</td>
<td>1 death, ? age not specified</td>
</tr>
<tr>
<td>McElhinney</td>
<td>2000</td>
<td>36</td>
<td>4.0</td>
<td>24 mo, Diffuse type, Severe PA disease</td>
</tr>
</tbody>
</table>

*mean or median
SAVS in Infants

- Is younger age a risk factor?

- Complicating features are more prevalent in younger patients:
 - Diffuse disease
 - Bi-ventricular obstruction
 - Coronary artery obstruction
“Congenital Supravalvular Aortic Stenosis and Sudden Death Associated with Anesthesia: What’s the Mystery?”

- Review of all reported cases:
 - Bi-ventricular obstruction, or coronary obstruction
 - Most patients were young
 - 7 of 15 < 1 yr.
 - 10 of 15 < 2 yr.

Diffuse SVAS

Stamm, *JTCVS* 1999

Brown, *EJCTS* 2002
Diffuse SVAS Prevalent in Infants

 – 28% (7/25) overall had diffuse disease
 – 75% (6/8) <10 kg. had diffuse disease
 – Only 1 patient >10 kg. had diffuse disease

 – 60% (6/10) infants operated for SVAS had diffuse disease

 – 5 of 6 patients w/ diffuse disease were infants
Bi-ventricular Obstruction

SVPS

Pulmonary arteriogram

SVAS

Levophase
Bi-ventricular Obstruction

- **Stamm, et al. JTCVS 2000**
 - SVAS + right heart obstruction referred at younger age
 - ↑ RV pressure :↓ age

 - All SVAS+SVPS were infants, (n=5)
Coronary Involvement
SVAS with Coronary Obstruction

N=9

Type I
Ostial Narrowing
n=5

Type II
Cusp-Ridge Fusion
n=2

Type III
Fusiform Narrowing
n=2

7 patch angioplasties

*5 of 9 ≤ 2 yrs.

Thistlethwaite, et al. JTCVS 2000
Repair of SVAS

McGoon

1 sinus

Doty

2 sinus
3 Sinus Repair

surgeon
3-Sinus Repairs

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Total</th>
<th>Types (Brom, Meyers, Chard, Other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaushal</td>
<td>2010</td>
<td>8</td>
<td>8 Brom</td>
</tr>
<tr>
<td>Scott</td>
<td>2010</td>
<td>15</td>
<td>13 Meyers, 1 Brom, 1 Other</td>
</tr>
<tr>
<td>Metton</td>
<td>2009</td>
<td>23</td>
<td>23 Brom</td>
</tr>
<tr>
<td>Cruz-Castaneda</td>
<td>2009</td>
<td>9</td>
<td>9 Brom</td>
</tr>
<tr>
<td>Kocyildrin</td>
<td>2009</td>
<td>11</td>
<td>11 Brom</td>
</tr>
<tr>
<td>Kang</td>
<td>2001</td>
<td>7</td>
<td>4 Chard, 3 Meyers</td>
</tr>
<tr>
<td>McElhinney</td>
<td>2007</td>
<td>7</td>
<td>7 Meyers/Chard</td>
</tr>
<tr>
<td>Stamm</td>
<td>1999</td>
<td>6</td>
<td>4 Meyers, 2 Brom</td>
</tr>
<tr>
<td>HazeKamp</td>
<td>1999</td>
<td>13</td>
<td>13 Brom</td>
</tr>
<tr>
<td>Meyers</td>
<td>1993</td>
<td>6</td>
<td>2 Brom, 4 Meyers</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>105</td>
<td>69 Brom, 24 Meyers, 4 Chard, 1 Other</td>
</tr>
</tbody>
</table>
Brom Repair for Diffuse SVAS
Brom Repair

ST junction is 7mm
Need ~ 14mm
Circumference = $\pi \times$ diameter
π approx = 3
Need to add $(14-7) \times 3 = 21$ mm
3 patches →
Each patch ~ $(14-7)$ = 7 mm
Discrete SVAS

Diastole

Systole