Atrioventricular Valve Repair in Patients with Single Ventricle Physiology: Impact of Ventricular Function and Morphology, Valve Morphology, and Mechanism of Insufficiency on Outcomes

Osami Honjo, MD, PhD, Cori Atlin, BA, Luc Mertens, MD, PhD, Osman O. Al-Radi, MD, MSc, Andrew N. Redington, MD, Christopher A. Caldarone, MD, Glen Van Arsdell, MD

The Labatt Family Heart Centre, The Hospital for Sick Children The University of Toronto, Canada.
Disclosure

Authors have no disclosures
Single Ventricle and AV Valve Insufficiency

• Background

Contraindication for Fontan operation in the past

Still a risk factor for death or failure of cavopulmonary circulation

• Repair of AV Valve insufficiency may alter the risk for poor outcome
Hypothesis

Primary Hypothesis
Repair modifies the natural history of functional single ventricle physiology with AV valve regurgitation

Secondary Hypothesis
Survival Impacted by: AV valve morphology
Mechanism of insufficiency
Ventricular morphology and function
1998 to 2008 review

1. Blinded re-evaluation of echocardiograms
 Primary Outcome: death or transplantation
 Secondary Outcomes:
 - Re-operation
 - AV Valve Function
 - Ventricular Function

2. A case match control for primary outcome
Patient Population

57 (13.5%) AV valve repair
422 functional single ventricle patients

Median age: 6.8 months
(31+/-46 months 8 days to 17.4 years old)

Median weight: 6.9 kg
(11.3+/-11 kg, 2.1-58 kg)
Diagnosis/Morphology

N=57

Diagnosis

Dominant ventricle

Undetermined
3%

Left ventricle
14%

Right ventricle
83%

AV valve

Common AV valve
28%

Mitral
4%

Undetermined
2%

Tricuspid
66%
Timing of AV valve repair

Patients (n)

- Stage I: 2.5%
- Stage II: 60%
- Between Stage II and III: 17.5%
- Fontan: 17.5%
- After Fontan: 2.5%
Preoperative echo findings

Insufficiency

Ventricular dilatation

Mild to Moderate

Moderate

Severe

None

Ventricular dysfunction

Mild

Moderate

Severe

None
AV valve abnormalities

- Annular dilatation: 70%
- Prolapse: 50%
- Dysplasia: 50%
- Cleft: 20%
- Chordal elongation: 40%
- Restriction: 50%
Primary mechanism of AV valve insufficiency

- Dysplasia: 35%
- Restriction: 2%
- Prolapse: 46%
- Cleft: 2%
- Annular dilatation: 15%
Repair techniques

- **Annuloplasty** (localized, 96%, ring 4%)
- **Commissuroplasty**
- **Suture repair of leaflet dysplasia**
- **Edge-to-edge repair** (Alfieri’s stitch)
- **Cleft closure**

Percentage of the patients
Overall survival
Entire cohort (n=57)

Freedom from death or transplant

Median follow-up: 59 months (1-128 months)

Cum Survival

Months from valve repair

1 year: 79%
3 year: 69%

57 43 34 28 15 4
AV Valve Repair Result

Grade: 2.1+/−0.5 vs. 0.84+/−0.6
P=0.0001

Grade

3
Severe

2
Moderate

1
Mild to Moderate

2
Moderate

1
Mild

0
None or trivial

(12%)
Factors Impacting Survival
Valve and Ventricular Function

Freedom from death/transplant

- Successful repair/normal function (n=41, 74%)
- Failed repair/normal function (n=5, 8%)
- Failed repair/poor function (n=9, 15%)
- Successful repair/poor function (n=2, 3%)

Log rank: P=0.02

Failed repair ≥ Moderate AVVR
Poor function ≥ moderately reduced
Death or Transplant

Impact of Diagnosis and Morphology

Diagnosis

- AVSD
- HLHS
- TA/DILV
- DORV

Ventricular morphology

- Indeterminate
- LV
- RV

Log rank: P=0.4

Months from valve repair

AV valve morphology

- Mitral valve
- Tricuspid valve
- Common AV valve

Log rank: P=0.8

Months from valve repair

Impact of Diagnosis and Morphology

Mitral valve

Log rank: P=0.8

Common AV valve

Months from valve repair
Competing risk outcomes

Alive/no re-valve repair
Dead
Alive after transplant
Alive after re-valve repair

3 years
Primary Outcome
Predictors for death/transplant

• Multivariate logistic regression model

 Increased indexed AV valve annulus size \(p=0.05 \)
 Cardiopulmonary bypass time \(p=0.04 \)
 Post-repair ventricular function \(p=0.02 \)

• Cox regression model

 Annular dilatation as the primary mechanism \(p=0.02 \)
 Cardiopulmonary bypass time \(p=0.02 \)
 Post-repair ventricular function \(p=0.02 \)
 Post-repair residual AV valve insufficiency \(p=0.03 \)
Secondary Outcome
Re-valve repair or replacement

N=10 (17.5%)
(Median 21 months)

Re-repair: n=6
Replacement: n=4

Freedom from death/transplant
Overall (n=10)

1 year survival: 70%

Freedom from death/transplant
Re-repair vs. replacement

Log-rank: p=0.6
Predictors for re-repair/replacement

- Multivariate logistic regression model

 - Young age at repair \(p=0.05 \)
 - Small body surface area \(p=0.03 \)
 - Increased indexed AV valve annulus size \(p=0.002 \)
 - Increased ventricular dimension \(p=0.01 \)
 - Leaflet dysplasia \(p=0.03 \)
 - Post-repair residual AV valve insufficiency \(p=0.05 \)

\(n=49 \)
Case match control study

n=50

Freedom from death/transplant

Hazard function

Matching criteria:
- Age
- Body weight, BSA,
- Diagnosis
- Ventricular/AV valve morphology
- Ventricular function

Valve repair group

Case match control

Log-rank: p=0.015
Impact of Valve and Ventricular Function

Group 1: Successful repair/normal function

- Valve repair group (n=35) (successful repair/normal function)
- Case match control (n=35)

Log rank: p=0.36

Group 2: Successful repair/poor function

- Valve repair group (n=9) (successful repair/poor function)
- Case match control (n=9)

Log rank: p=0.03
Summary

AV valve insufficiency was anatomic in 85%

AV valve repair was successful in 88%

Good repair with preserved function provided equivalent survival to case match controls.
Summary

Predictors of Failure
- Poor Function
- Dilated annulus and ventricle
- Long bypass
- Residual AV valve insufficiency

Strategies designed to preserve ventricular function and geometry may alter the natural history

Early successful repair may alter late outcome