Prospective multi-center European randomized trial to evaluate PleuraSeal™ as an adjunct to standard closure techniques for control of visceral pleural air leaks following elective lobectomy via open thoracotomy

P. De Leyn, University Hospitals Leuven, Belgium
M. Mueller, Otto Wagner Hospital, Vienna, Austria
J. Oosterhuis, VU Medical Centre Amsterdam, Netherlands
T. Schmid, University Hospital Innsbruck, Austria
C. Choong, Papworth Hospital, Cambridge, UK
W. Weder, University Hospital Zurich, Switzerland
Y. Sokolov, Free University Hospitals Brussels, Belgium
Financial disclosure
Conflict of interest

• The study was funded by Covidien
• Dr. P. De Leyn has a consultancy agreement with Covidien

Product is not available for sale in the US.
Air leaks after lung resection

• Very common complication
• Intra-operative air leak: up to 70% after lobectomy
• Majority stop within 7 days
• Prolonged air leak (> 7 days): 15%

Wain et al., Ann Thorac Surg 2001;71:1623-9
Brunelli et al., Ann Thorac Surg 2004;77:1205-10
Prolonged air leaks

• Prolonged hospitalization
• Increased rate of empyema and pneumonia
 – Empyema: 11.9% vs 1%
 – Pneumonia: 11.9% vs 5.6%
• Increased cost and utilization of outpatient resources
• May necessitate pleurodesis and reoperation

*Brunelli et al., Chest 2006;1150-1156
**Brunelli et al., Ann Thorac Surg 2004;77:1205-10
***Liberman et al., Ann Thorac Surg 2010;89:891-8
Ideal lung sealant

• Adherent and strong
• Flexible and compliant
• Easy to store, prepare and apply
• Locally non-irritating, systemically non-toxic
• Resorbable
• Concerns about antigenicity and blood borne infections
Classification of Tissue Sealant

• Fibrin-based
 – Fluid glues, such as Tissucol®, Beriplast®, Quixil™, Vivostat®
 – Fleece-bound: Tachosil®

• Non-fibrin-based (synthetic)
 – Hydrogel (PleuraSeal™ lung sealant, Coseal®)
 – With photopolymerization i.e., acrylate
Synthetic Hydrogel: PleuraSeal™ Lung Sealant System

- **Two liquid components:**
 - Polyethylene glycol ester solution (PEG): blue precursor, improves visibility during application
 - Trilysine amine solution: clear precursor

- **When mixed, the liquids crosslink to form an absorbable gel**

When sprayed, liquid PleuraSeal™ diffuses into tissue surface. Hydrogel reaction *Mechanical interlock* with the tissue surface
Synthetic Hydrogel: PleuraSeal™ Lung Sealant System

- Short preparation time (< 2 min)
- Stored at room temperature
- Good adhesion to the pleura (5x as compared to liquid fibrin*)
- Expands with lung inflation
- Completely synthetic
- Absorbable (4-8 weeks)

*Proprietary Covidien data on file, # file 374991
Literature: Cochrane review
Belda-Sanchis et al, Cochrane database of systematic reviews 2010, Issue 1, Art. No: CD003051

- 1990-2008: Sixteen randomized trials (n=16)
- Reduction of post-op air leaks (n=6)
 - Porte; Wain; Fabian; Tansley; Marta; Droghetti
- Reduction of duration of chest drainage (n=3)
 - Fabian; Tansley; Anegg
- Reduction of duration of hospital stay (n=3)
 - Allen; Tansley; Anegg

Wain, Ann Thorac Surg, 2001
Tansley, J Thorac Cardiovasc Surg, 2006
Droghetti, J Thorac Cardiovasc Surg, 2008
Anegg, Europ J Cardiothorac Surg, 2007
Allen, Ann Thorac Surg, 2004
1990-2008: Sixteen randomized trials (n=16)

Multicenter trials: n=4
- Allen, Lang, Wain, Marta
- Reduction of duration of hospital stay: Allen

Inclusion: patients with air leaks: n=6
- Wong, Porte, Allen, Tansley, Anegg, Marta

Wain, Ann Thorac Surg, 2001
Tansley, J Thorac Cardiovasc Surg, 2006
Anegg, Europ J Cardiothorac Surg, 2007
Allen, Ann Thorac Surg, 2004
Lang, Europ J Cardiothorac Surg, 2003
Material and methods

- Prospective multicenter randomized study
- Air leak after lobectomy or anatomical segmentectomy (open thoracotomy)
- Adjunct to standard closure techniques
- 1/1 randomization pleuraseal™ vs control
Material and Methods

- **European academic tertiary thoracic units**
 - University Hospitals Leuven, Belgium
 - Otto Wagner Hospital, Vienna, Austria
 - VU Medical Centre Amsterdam, Netherlands
 - University Hospital Innsbruck, Austria
 - Papworth Hospital, Cambridge, UK
 - University Hospital Zurich, Switzerland
 - Free University Hospitals Brussels, Belgium
 - Medical centre Rotterdam Zuid, Rotterdam, Netherlands*

This center was not able to enroll patients
Material and Methods

• **Primary end-point:**
 Proportion of patients remaining air leak free from the time of skin closure to hospital discharge

• **Secondary endpoints:**
 1. Proportion of patients for whom intraoperative air leak sealing success is achieved
 2. Duration of air leak (hours)
 3. Duration of chest drainage (hours)
 4. Duration of hospitalization (hours)

• **Statistics:**
 – Estimated success rates for primary end-point:
 Pleuraseal group: 40%; Control group: 15%
 – 112 patients
Material and Methods

Air leak risk score assessment

Pre-operative criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score = 0</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD 1 (FEV1≥80)</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
<tr>
<td>COPD 2 (FEV1 50-80)</td>
<td>Not present</td>
<td>Present = 2</td>
</tr>
<tr>
<td>COPD 3 (FEV1<30-50)</td>
<td>Not present</td>
<td>Present = 3</td>
</tr>
<tr>
<td>COPD 4 (FEV1<30)</td>
<td>Not present</td>
<td>Present = 4</td>
</tr>
<tr>
<td>FEV1/FVC%<65%</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
<tr>
<td>Smoking (ever as habit)</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
<tr>
<td>Emphysema</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
<tr>
<td>Pre-op chemotherapy</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
<tr>
<td>Pre-op radiation therapy</td>
<td>Not present</td>
<td>Present = 1</td>
</tr>
</tbody>
</table>

Intra-operative criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score = 0</th>
<th>Score = 1</th>
<th>Score = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesions</td>
<td>Absent</td>
<td>Present (any)</td>
<td>N/A</td>
</tr>
<tr>
<td>Tissue</td>
<td>Normal</td>
<td>Fragile</td>
<td>N/A</td>
</tr>
<tr>
<td>Extent of surgery</td>
<td>Typical</td>
<td>Extensive</td>
<td>N/A</td>
</tr>
<tr>
<td># Leak Sites</td>
<td>1-2</td>
<td>3-6</td>
<td>> 6</td>
</tr>
</tbody>
</table>

Stratification into low-risk or high-risk strata based on pre-op and intra-op factors.
Intra-operative air leak classification

- Grade 0: No air leak
- Grade 1: Countable bubbles
- Grade 2: Stream of bubbles
- Grade 3: Coalescent bubbles

Chest tube management

- Two chest tubes
- Suction 18 h, then water seal
- Evaluated by trained staff/12 h; visual control
- Removal: no air leaks and drainage level < 300ml/24 h
Results

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pleuraseal ™ group (n=62)</th>
<th>Control group (n=59)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>61.5</td>
<td>62.8</td>
<td>0.463</td>
</tr>
<tr>
<td>Nicotine use</td>
<td></td>
<td></td>
<td>0.719</td>
</tr>
<tr>
<td>• History</td>
<td>31 (50%)</td>
<td>34 (58)</td>
<td></td>
</tr>
<tr>
<td>• Current</td>
<td>22 (36%)</td>
<td>17 (29)</td>
<td></td>
</tr>
<tr>
<td>Concomitant Pulmonary disease</td>
<td>35 (56%)</td>
<td>25 (42.%)</td>
<td>0.147</td>
</tr>
<tr>
<td>Indication for operation</td>
<td></td>
<td></td>
<td>0.236</td>
</tr>
<tr>
<td>• Primary lung cancer</td>
<td>62 (100%)</td>
<td>57 (97%)</td>
<td></td>
</tr>
<tr>
<td>• Other</td>
<td>0</td>
<td>2 (3%)</td>
<td></td>
</tr>
<tr>
<td>Type of procedure</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>• Lobectomy</td>
<td>61 (98%)</td>
<td>58 (98%)</td>
<td></td>
</tr>
<tr>
<td>• Segmentectomy</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
<td></td>
</tr>
<tr>
<td>Total Risk score (pre- and intra-op)</td>
<td>3.9 ±2.0</td>
<td>3.4 ±1.6</td>
<td>0.160</td>
</tr>
<tr>
<td>Risk stratification</td>
<td></td>
<td></td>
<td>0.298</td>
</tr>
<tr>
<td>• Low risk (score 1-5)</td>
<td>51 (82.3%)</td>
<td>53 (89.8%)</td>
<td></td>
</tr>
<tr>
<td>• High Risk (score 6-11)</td>
<td>11 (17.7%)</td>
<td>6 (10.2%)</td>
<td></td>
</tr>
</tbody>
</table>
Secondary end-point
Percentage of patients with intra-operative air leak sealing

- Control (n=59): 23.7%
- PleuraSeal™ (n=62): 71%

p < 0.001
Primary end-point
Percentage of patients that remained air leak free until discharge

• Overall : 41.9% (P group) vs 30.5% (C group), p=0.257

• Significant effect in patients with grade II-III air leaks
 43.5% (P group) vs 15.2% (C group), p=0.013
Primary endpoint
Percentage of patients remaining air leak free (until discharge)

- Grade 1: PleuraSeal™ (n=62) 37.5%, Control (n=59) 50%
 - p=0.530
- Grade 2 or 3: PleuraSeal™ 43.5%, Control 15.2%
 - p=0.013
Results

<table>
<thead>
<tr>
<th></th>
<th>PleuraSeal™ group (n=62)</th>
<th>Control group (n=59)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-op air leak sealing success (%)</td>
<td>71.0%</td>
<td>23.7%</td>
<td><0.001</td>
</tr>
<tr>
<td>Post-op air leak free (%)</td>
<td>41.9%</td>
<td>30.5%</td>
<td>0.257</td>
</tr>
<tr>
<td>Duration of air leak (hours)</td>
<td>6 (0-630)</td>
<td>30 (0-312)</td>
<td>0.790</td>
</tr>
<tr>
<td>Duration of chest tube drainage (h)</td>
<td>94 (23-838)</td>
<td>94 (18-479)</td>
<td>0.339</td>
</tr>
<tr>
<td>Amount of chest tube drainage (ml)</td>
<td>1816 (500-7825)</td>
<td>1642 (400-5145)</td>
<td>0.559</td>
</tr>
<tr>
<td>Length of hospitalization (h)</td>
<td>312 (144-3144)</td>
<td>288 (120-2040)</td>
<td>0.292</td>
</tr>
</tbody>
</table>

Values are presented as median (range)
Results: adverse events

- No hospital mortality
- Similar incidence of complications:
 35.5% (P group) vs 23.7% (C group), p=0.170
- No adverse events attributable to use of sealant
- No effect on renal or liver function (laboratory)
- No differences in lung expansion or pneumothorax
Results

<table>
<thead>
<tr>
<th>Condition</th>
<th>Statistic</th>
<th>Pleuraseal (n=62)</th>
<th>Control (n=59)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>n (%)</td>
<td>5 (8.1)</td>
<td>3 (5.1)</td>
<td>0.718</td>
</tr>
<tr>
<td>Empyema</td>
<td>n (%)</td>
<td>2 (3.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>n (%)</td>
<td>2 (3.2)</td>
<td>2 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Wound infection</td>
<td>n (%)</td>
<td>1 (1.6)</td>
<td>1 (1.7)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>n (%)</td>
<td>9 (14.5)</td>
<td>5 (8.5)</td>
<td>0.397</td>
</tr>
<tr>
<td>ARDS</td>
<td>n (%)</td>
<td>1 (1.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BP fistula</td>
<td>n (%)</td>
<td>1 (1.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Atelectasis</td>
<td>n (%)</td>
<td>0</td>
<td>1 (1.7)</td>
<td></td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>n (%)</td>
<td>1 (1.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>n (%)</td>
<td>6 (9.7)</td>
<td>3 (5.1)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>n (%)</td>
<td>0</td>
<td>1 (1.7)</td>
<td></td>
</tr>
</tbody>
</table>
• Pleuraseal™ had no effect in grade I air leaks.

• Pleuraseal™ had a significant effect on grade II-III air leaks
Control group: results better than expected

- Primary end-point control 30.5% (expected 15%)

Differences in air leaks before randomization in P and C group?
Grade of air leaks (before randomization)

- **PleuraSeal™ (n=62):**
 - Grade 1: 25.8%
 - Grade 2: 67.7%
 - Grade 3: 6.5%

- **Control (n=59):**
 - Grade 1: 44.1%
 - Grade 2: 54.2%
 - Grade 3: 1.7%

p-value: 0.077
In this study, hospitalization time after lobectomy was significantly longer compared to duration of air leak and chest tube drainage.

We observed a high variability in length of hospitalization by site.
Conclusions

• In this multicenter trial, PleuraSeal™ significantly reduced intra-op air leaks after lobectomy
• In patients with grade 2-3 air leaks, significant more patients remained air leak free
• PleuraSeal™ is safe and effective
• In Europe, hospitalization time after lobectomy is (not yet) determined by duration of air leak