Preliminary Results of Anatomic Lung Resection Utilizing Energy-Based Tissue and Vessel Coagulative Fusion Technology

Schuchert MJ, Abbas G, Pettiford BL, Luketich JD, Landreneau RJ
Heart, Lung and Esophageal Surgery Institute
University of Pittsburgh Medical Center
Financial Disclosure

none
Background

Pulmonary Vascular Division

Manual suture ligation

Mechanical staplers

- N=713 patients; 2567 vessels divided
- Mini-thoracotomy with stapled vascular division
- 5 intimal fractures, one avulsion, one mis-fire

Limitations:
- Bulky, floppy cartridges
- Mechanical failure
- Cost
Background

Energy-Based Tissue Fusion

- Bipolar tissue fusion – RFA energy
- Fuses collagen and elastin to create a permanent vascular seal
- Utilized extensively in intra-abdominal applications (splenectomy, nephrectomy, colectomy et al.)
- Role in the division of the pulmonary vasculature is not well-established
Energy-Based Tissue Fusion

- Harmonic Scalpel (Ethicon Endosurgery, Inc)
- Ultrasonic Shears (Covidien)
- EnSeal PTS (SurgRx)
- Gyrus PK (Gyrus Medical)
- BiClamp VIO300D (ERBE Elektromedizin GmbH)
- Ligasure (Valley Lab)
Harmonic Scalpel (Ethicon Endosurgery, Inc)

Ultrasonic Shears (Covidien)

EnSeal PTS (SurgRx)

Gyrus PK (Gyrus Medical)

BiClamp VIO300D (ERBE Elektromedizin GmbH)

Ligasure (Valley Lab)

- Only device approved by the FDA for the pulmonary vasculature
Energy-Based Tissue Fusion

Pre-clinical Studies

- Durable burst pressure strength (~300 mmHg)
- Safely divides vessels ≤ 7mm in live swine and sheep models

Human Studies

- Albanese et al. (2003) - Pediatric series (n=14) of lobectomy for prenatal diagnoses of CCAM or sequestration
- Meehan et al. (2008) - Robotic pulmonary resection in 6 children using the Ligasure and Gyrus PK
- Santini et al. (2006) - Pulmonary vessel division in 36 patients up to 7 mm in size

No significant morbidity or bleeding complications
Nothing Happens Unless You Try!
Ligasure

- The **Ligasure Impact™** device working jaw achieves a seal 36 mm in length and a variable width from tip to base of 3.3-4.7 mm.
- The jaw also has a 14-degree curvature, facilitating passage around vascular structures.

- The **LigaSure Atlas™** instrument has a uniform coagulating surface of 22 mm in length and 6 mm in width.
Objectives

- Evaluate the safety and efficacy of an electrical thermo-coagulative device in accomplishing segmental pulmonary vasculature fusion and division during anatomic pulmonary resection.

- Primary outcome variables included operative data, hospital course, complications, and mortality.
Methods

Energy-Based Tissue Fusion of the Pulmonary Vasculature

- n= 211 anatomic lung resections from 2008-2010
- Ligasure Impact in 12 cases (2 basilar dehiscences)
- Ligasure Atlas utilized in the remainder of cases
- For vessels > 7 mm, first order branches are taken
- Two energy applications per fusion
Patient and Tumor Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Patients (n=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>113 F, 98 M</td>
</tr>
<tr>
<td>Age</td>
<td>64.8 (19-88)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>Adeno</td>
<td>79 (55%)</td>
</tr>
<tr>
<td>Squamous</td>
<td>42 (28%)</td>
</tr>
<tr>
<td>Large Cell</td>
<td>9 (6%)</td>
</tr>
<tr>
<td>Other Lung CA</td>
<td>27 (4%)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>24 (1%)</td>
</tr>
<tr>
<td>Benign</td>
<td>30 (6%)</td>
</tr>
<tr>
<td>Tumor Size (cm)</td>
<td>2.9 (0.5-14.3)</td>
</tr>
<tr>
<td>Approach</td>
<td>125 VATS, 86 Open</td>
</tr>
</tbody>
</table>
Perioperative Data

<table>
<thead>
<tr>
<th></th>
<th>Patients (n=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessels Divided</td>
<td></td>
</tr>
<tr>
<td>Arteries</td>
<td>476</td>
</tr>
<tr>
<td>Veins</td>
<td>229</td>
</tr>
<tr>
<td>Vessel Size (range)</td>
<td>6 mm (0.4-1.2)</td>
</tr>
<tr>
<td>Vascular Dehiscences</td>
<td>2 Venous, 0 Arterial</td>
</tr>
</tbody>
</table>
Perioperative Data

<table>
<thead>
<tr>
<th></th>
<th>Patients (n=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative Time (min)</td>
<td>60</td>
</tr>
<tr>
<td>Estimated Blood Loss</td>
<td>100</td>
</tr>
<tr>
<td>CT Duration</td>
<td>5</td>
</tr>
<tr>
<td>Length of Stay (Median)</td>
<td>6</td>
</tr>
<tr>
<td>Complications</td>
<td>53 (25.1%)</td>
</tr>
<tr>
<td>Mortality (30 Day)</td>
<td>1 (0.5%)</td>
</tr>
</tbody>
</table>
Video – Left Upper Division

Pulmonary Vein
Video – Left Upper Division

Pulmonary Artery
Potential Advantages

Ease of use – Open and VATS

Low profile jaws facilitate instrument positioning

Excellent hemostasis during the course of resection

Can assist in development of the fissures

Minimal thermal spread (2-3 mm)

Reduced operative costs
Conclusions

- The bipolar tissue fusion system represents a safe and effective technique for the division of both pulmonary arteries and veins (ideally ≤ 7 mm) during anatomic lung resection.

- This technology constitutes a valid alternative to stapling methods in this setting.

- Larger prospective series with long-term results and cost/benefit analyses will be necessary to better define the utility of this technology during anatomic lung resection.
Thank You