Role of EBUS in Mediastinal Staging

Controversies in the Utilization of New Technology

Kazuhiro Yasufuku MD, PhD
Director, Interventional Thoracic Surgery Program
Assistant Professor, University of Toronto
Division of Thoracic Surgery, Toronto General Hospital

American Association for Thoracic Surgery Annual Meeting
May 5, 2010
Disclosure

- Industry-sponsored grants
 Unrestricted grants from Olympus Medical Systems for continuing medical education
Mediastinal Staging

- Non-invasive staging (Imaging)
 - CT, PET, PET-CT, MRI

- Invasive staging (Tissue)
 - Surgical biopsy (Med, VATS)
 - Needle biopsy (EBUS-TBNA, EUS-FNA, TTNA)
EBUS-TBNA

- Access to all LN stations accessible by Med as well as N1 nodes
- A minimally invasive modality which can be performed under LA
- Performed in over 1300 centres
Convex Probe EBUS (CP-EBUS)

Outer Diameter: 6.7mm
Scanning Range: 50 degrees
Instrument Channel: 2.2mm
Optics: 35 degrees forward oblique
Convex Probe EBUS (CP-EBUS)
EBUS-TBNA Procedure
Cell blocks often contain a “mini-core” of tumour.

Can be used for multiple immunohistochemical stains.

Can provide prognostic information *
(cell-cycle proteins, EGFR mutation).

* Nakajima et al. Chest 2007
Mohammed et al. Thorax 2008
LN assessable
2, 4, 7, 10, 11, 12, 8, 9

LN not assessable
5, 6
RLL Squamous cell ca
Systematic LN Sampling

EBUS-TBNA N0 ⇒ cT2N0M0 stage IB ⇒ pT2N0M0 stage IB
EBUS-TBNA - Yield

- EBUS-TBNA: 924 cases from 1689 LN sites
- Lung cancer staging n=657
- Diagnostic yield (LN staging) 94.7 %
- Diagnostic yield in EBUS-TBNA assessable lymph node station 98.2 %
- Non-diagnostic cases n=28 (3%)
- False negative cases n=35 (5.3%)
EBUS-TBNA – False negatives

Seen in 35/657 Lung cancer cases
Only 12 true false negative cases
EBUS-TBNA Systematic Review

- 11 studies (n=1299)
- Sensitivity = 0.93 (95%CI, 0.91-0.94), Specificity = 1.00 (95%CI, 0.99-1.00)
- Study sensitivity not related to prevalence of LN metastasis

Gu et al. Eur J Cancer 2009
EBUS vs Mediastinoscopy
Superior Mediastinal Nodes

1. Highest Mediastinal
2. Upper Paratracheal
3. Pre-vascular and Retrotreacheal
4. Lower Paratracheal (including Azygos Nodes)

Aortic Nodes

5. Subaortic (A-P window)
6. Para-aortic (ascending aorta or phrenic)

Inferior Mediastinal Nodes

7. Subcarinal
8. Paraesophageal (below carina)
9. Pulmonary Ligament

\(N_1 \) Nodes

10. Hilar
11. Interlobar
12. Lobar
13. Segmental
14. Subsegmental

Hwangbo et al. Respirology 2009
Restaging - Mediastinoscopy

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamatis et al</td>
<td>165</td>
<td>74 %</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Schil et al</td>
<td>27</td>
<td>73 %</td>
<td>100 %</td>
<td>85 %</td>
</tr>
<tr>
<td>Mateau et al</td>
<td>12</td>
<td>70 %</td>
<td>100 %</td>
<td>80 %</td>
</tr>
</tbody>
</table>
Restaging - EBUS

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBUS-TBNA</td>
<td>76%</td>
<td>100 %</td>
<td>100 %</td>
<td>20 %</td>
<td>77%</td>
</tr>
</tbody>
</table>

124 patients met inclusion criteria following chemotherapy

- 58 stable disease
 - 17 EBUS negative
 - Thoracotomy 3 negative
 - Thoracotomy 14 positive
 - 41 EBUS positive
 - Thoracotomy 41 positive

- 66 partial response
 - 18 EBUS negative
 - Thoracotomy 4 negative
 - Thoracotomy 14 positive
 - 48 EBUS positive
 - Thoracotomy 48 positive

Herth, Yasufuku et al. The role of EBUS-TBNA for restaging the mediastinum in Lung ca. JCO 2008
Risk - Mediastinoscopy

- GA required for mediastinoscopy

- Hammoud (WU) 1999 - 2137 pts
 - 0.05% mortality
 - 0.6% morbidity (bleeding, RLN injury)

- Lemaire (Duke) 2006 – 2145 pts
 - 0.05% mortality
 - 0.6% recurrent nerve injury
Risk - EBUS

- No reported mortality

- Gu et al. *Eur J Cancer* 2009 - 1299 pts (11 studies)
 - Systematic review of EBUS-TBNA for lung ca staging
 - 0.07% morbidity (pneumothorax)

- Varela-Lema et al. *Eur Respir J* 2009 – 1627 pts (15 studies)
 - Systematic review of EBUS-TBNA for lung ca staging
 - No complications
 - Only three studies reported agitation, cough and presence of blood at puncture site
Direct Comparison
EBUS vs Mediastinoscopy

- Comparison of EBUS-TBNA and med for LN staging of Pts with enlarged mediastinal LN
- Prospective, crossover trial with surgical lymph node dissection used as the accepted standard
- N=66, prevalence of malignancy 89%
- Overall diagnostic yield in per LN analysis
 EBUS-TBNA 91% vs Med 78% (p=0.007)
- Disagreement in the yield for station #7 (24%; p=0.011).
- Per patient analysis of LN staging
 EBUS-TBNA 93% vs Med 82% (p=0.083)

J Thorac Oncol. 2008; 3: 577-582
EBUS vs Mediastinoscopy

Controlled prospective comparison of EBUS-TBNA and Med
All pts potential candidates for surgical resection
No significant differences between EBUS-TBNA (91.8%) and Med (93.9%) in the diagnostic yield for LN staging in NSCLC

Yasufuku et al. WTSA 2007 abstract
EBUS vs Mediastinoscopy

- Reach >
- Overall yield =
- FN rate >
- Risk >
- Cost >
- Restaging =

EBUS

Med
Advantages of EBUS over Med

- Outpatient setting under local anesthesia
- Absence of neck scar
- Access to N1 nodes
- Less risk of morbidity
- Less healthcare costs
- Potential to streamline thoracic surgical capacity
- Avoids unnecessary surgery in pts with infiltrating mediastinal disease
Conclusion

- EBUS-TBNA is less invasive, more safer and as accurate as surgical staging in patients with discrete node enlargement.

- EBUS-TBNA may be considered the first line procedure for pts with NSCLC with radiologic evidence of mediastinal adenopathy.

- In pts with surgically resectable lung cancer, there remains a role for mediastinoscopy to exclude metastases in non-enlarged LNs.
Who We Are