Perioperative Corticosteroid Levels and the Adrenal Response Following Infant CPB

Sheri S. Crow, MD, William C. Oliver, Jr, MD, Jamie A. Kiefer, PA-C, Melissa Snyder, PhD, Joseph A Dearani, MD, Harold M Burkhart, MD

2013 AATS Annual Meeting
Mayo Clinic
No disclosures
Cardiopulmonary Bypass (CPB) and Children

- Induces a systemic inflammatory response
 - Complement activation
 - Cytokine release
 - Cortisol levels increase

- Clinical manifestations
 - Low cardiac output
 - Hemodynamic lability
 - Fluid retention
 - Fever

Kozik Ann Thorac Surg 2006
Madhok Pediatr Cardio 2006
Bronicki Crit Care Med 2003
Potential Solution

Glucocorticoids
Consequences of Corticosteroids

- **Immunosuppression:**
 - Lymphocyte
 - T helper cell
 - Cytotoxic T cell
- **Neutrophil induction**
- **Cortisol suppression**
- **Glucose induction**
Clinical Consequences

- Pediatric Health Information System Database
- 46,730 children (0-18 yrs) undergoing CPB
 - 54% received corticosteroids
- Corticosteroid treated children had increased:
 - Infection rates
 - Insulin requirement
 - ICU and hospital length of stay

- Potential causes:
 - Over suppression of inflammatory/stress response

S Pasquali Circulation 2010; 122:2123-2130
The “appropriate” infant stress response??

- Unknown
- Wide range of post-op cortisol levels reported
- Variation in results are due to:
 - Study design
 - Corticosteroid dose and timing
 - Diverse patient populations

- Post-operative corticosteroid drug levels??
Objective

- To determine whether a standard 1mg/kg intraoperative dose of dexamethasone results in similar drug levels for all patients
- Characterize the relationship between dexamethasone levels and the innate stress response following infant CPB

Hypothesis:
Postoperative dexamethasone levels after standardized intra-operative dosing are highly variable and inversely related to the infant stress response
Eligibility

• Inclusion Criteria
 ▫ Diagnosis of Congenital Heart Disease
 ▫ Age: 0-365 days
 ▫ Planned cardiac surgery utilizing CPB

• Exclusion Criteria
 ▫ Premature Birth: < 36 weeks GA
 ▫ Corticosteroids within 24 hours before surgery
 ▫ Pre-operative mechanical circulatory support
Congenital Heart Patients
N=32

Post-Induction
- TIME 1
 - Cortisol
 - ACTH
 - IL 6,8,10

Post-CPB Pre-MUF
- TIME 2
 - Cortisol
 - ACTH
 - IL 6,8,10

ICU Arrival
- TIME 3
 - Cortisol
 - ACTH
 - IL 6,8,10

TIME 4, 5, 6
- Cortisol
- ACTH
- IL 6,8,10

TIME 7
- Cortisol
- ACTH
- IL 6,8,10

Dex 1mg/kg

- High Dex
 - ≥ 15 mcg/dL

- Low Dex
 - < 15 mcg/dL

Standard fentanyl/midazolam anesthesia

- Low Dex
 - < 15 mcg/dL
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Low Dex</th>
<th>High Dex</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (days)</td>
<td>199 ± 114</td>
<td>225 ± 363</td>
<td>0.827</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>10 (45%)</td>
<td>3 (30%)</td>
<td></td>
</tr>
<tr>
<td>RACHS-1 score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3, n</td>
<td>18</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4-6, n</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>104 ± 44</td>
<td>90 ± 35</td>
<td>0.35</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>51 ± 32</td>
<td>45 ± 28</td>
<td>0.63</td>
</tr>
<tr>
<td>Modified ultrafiltration (ml)</td>
<td>365 ± 192</td>
<td>293 ± 295</td>
<td>0.49</td>
</tr>
<tr>
<td>Mechanical ventilation duration (days)</td>
<td>3.9 ± 8.0</td>
<td>1.6 ± 1.4</td>
<td>1.00</td>
</tr>
<tr>
<td>ICU length of stay (days)</td>
<td>12 ± 14</td>
<td>11 ± 11</td>
<td>0.71</td>
</tr>
</tbody>
</table>

RACHS-1 score, risk adjustment for congenital heart surgery. CPB, cardio pulmonary bypass.

Data reported as mean ± standard deviation.
Dexamethasone Levels

* denotes significant difference between groups
Cortisol Responses

*Denotes a significant difference between groups, p=0.016
High Dex and Cortisol Response

- Persistent cortisol suppression
Study Limitations

- Single center investigation
- Small sample size precludes linking cortisol levels with clinical outcomes
Conclusions

• First comparison of post-CPB dexamethasone drug levels and the infant stress response

• Dexamethasone levels vary significantly between patients after a standard pre-CPB 1 mg/kg dose
 ▫ **High and low dex responders**

• Cortisol suppression persists even after dexamethasone levels decline in high dex responders
 ▫ **Iatrogenic adrenal insufficiency??**

• Dexamethasone levels are an important variable to consider in past and future studies seeking to link cortisol response with clinical outcomes
The “Optimal” Corticosteroid Approach

• Avoid overtreatment
 ▫ Infection risk
 ▫ Adrenal suppression- “iatrogenic adrenal insufficiency”
 ▫ Glucose induction

• Avoid under suppression in “at risk” patients

• **Ultimate Goal:** To develop an individualized approach to corticosteroid mediation of the infant CPB inflammatory/stress response
Acknowledgements

Harold M. Burkhart, MD
Joseph A. Dearani, MD
William C. Oliver, Jr MD
Jamie A Kiefer, PA-C
Lucinda M Stroetz, PA-C
Frank Cetta, MD and the Mayo Clinic Dept. of Pediatric Cardiology
Mayo Clinic Cardiothoracic Clinical Nurse Anesthetists
Mayo Clinic Perfusion
DeAnna Haugen and Laurnice Olsen

Funded by:
Mayo Clinic Dept. of Pediatric and Adolescent Medicine Research Award
Small Grants Program, Mayo Clinic Div. of Cardiothoracic Surgery
Center for Translational Science Activities (CTSA) CReFF Award
Questions?
ACTH Responses

* Denotes a significant difference between groups, p=0.025
Dexamethasone Level and IL-6

- IL-8 levels were similar between groups.
- IL-10 was lower at Time 4 in High Dex group (p=0.015).
IL-8 and IL-10

Table 3. Cytokine responses for times 1 though 7

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Low Dex</th>
<th>n</th>
<th>High Dex</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>1.33 ± 1.72</td>
<td>10</td>
<td>1.30 ± 0.62</td>
<td>0.127</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>5.40 ± 4.91</td>
<td>10</td>
<td>5.93 ± 6.59</td>
<td>0.890</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>7.79 ± 5.11</td>
<td>10</td>
<td>6.74 ± 4.80</td>
<td>0.637</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>5.69 ± 4.24</td>
<td>9</td>
<td>5.12 ± 3.10</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>5.43 ± 3.69</td>
<td>8</td>
<td>4.41 ± 2.35</td>
<td>0.758</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>5.41 ± 3.70</td>
<td>6</td>
<td>3.23 ± 1.51</td>
<td>0.098</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>7.57 ± 7.49</td>
<td>5</td>
<td>2.96 ± 1.05</td>
<td>0.240</td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>1.58 ± 3.61</td>
<td>10</td>
<td>0.95 ± 0.78</td>
<td>0.518</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>54.76 ± 40.46</td>
<td>10</td>
<td>40.11 ± 27.95</td>
<td>0.296</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>46.64 ± 27.87</td>
<td>10</td>
<td>44.77 ± 32.13</td>
<td>0.879</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11.96 ± 6.41</td>
<td>9</td>
<td>7.14 ± 10.29</td>
<td>0.015</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>7.46 ± 6.23</td>
<td>8</td>
<td>3.77 ± 2.22</td>
<td>0.097</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>5.64 ± 5.58</td>
<td>6</td>
<td>2.51 ± 0.67</td>
<td>0.174</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>13.87 ± 30.87</td>
<td>5</td>
<td>1.78 ± 1.49</td>
<td>0.518</td>
</tr>
</tbody>
</table>

IL, interleukin.
Potential Contributors to Drug Level Variability

- Age
- Gender
- Protein binding
- Patient genetics
- CPB related factors
Intra-Operative Steroid Practices

• Survey of Pediatric Cardiac Intensive Care Society
 ▫ 97% report intra-operative steroid use
 ▫ Only 40% use steroids with every case
 ▫ Decision for use based on:
 • Age of patient
 • Anticipated CPB time, DHCA
 • Surgeon preference

Checcia et al. Ped Crit Care Med 2005