Reoperation for Left Ventricular Outflow Tract Obstruction After Repair of Atrioventricular Septal Defect

David M. Overman
Division of Pediatric Cardiac Surgery
The Children’s Heart Clinic
Chief, Division of Cardiovascular Surgery
Children’s Hospitals and Clinics of Minnesota

No disclosures
Reoperation for Left Ventricular Outflow Tract Obstruction After Repair of Atrioventricular Septal Defect

David M. Overman
Division of Pediatric Cardiac Surgery
The Children’s Heart Clinic
Chief, Division of Cardiovascular Surgery
Children’s Hospitals and Clinics of Minnesota
Welcome to Spring in Minneapolis!
Objectives

- **Morphology of LVOT** in AVSD
- Anatomy of LVOTO in repaired AVSD
- Surgical strategies for LVOTO
- Technical details to optimize outcomes
Objectives

- Morphology of LVOT in AVSD
- **Anatomy of LVOTO** in repaired AVSD
- Surgical strategies for LVOTO
- Technical details to optimize outcomes
Objectives

• Morphology of LVOT in AVSD
• Anatomy of LVOTO in repaired AVSD
• Surgical strategies for LVOTO
• Technical details to optimize outcomes
Objectives

• Morphology of LVOT in AVSD
• Anatomy of LVOTO in repaired AVSD
• Surgical strategies for LVOTO
• Technical details to optimize outcomes
Outcomes: Repair of AVSD

- N = 93
- Median f/u: 37.3m
- Early mortality: 0%
- Late mortality: 2.2%
- Pacemaker: 7.5%
- MR reop: 19.4%

Primary Biventricular Repair of Atrioventricular Septal Defects: An Analysis of Reoperations
Hunaid A. Vohra, Alicia X.F. Chia, Ho Ming Yuen, Joseph J. Vettukattil, Gruschen Veldman, James Gnanapragasam, Kevin Roman, Anthony P. Salmon and Marcus P. Haw
Ann Thorac Surg 2010;90:830-837
Outcomes: Repair of AVSD

- N = 93
- Median f/u: 37.3m
- Early mortality: 0%
- Late mortality: 2.2%
- Pacemaker: 7.5%
- MR reop: 19.4%

Reoperation for LVOTO: 2.2%

Primary Biventricular Repair of Atrioventricular Septal Defects: An Analysis of Reoperations
Hunaid A. Vohra, Alicia X.F. Chia, Ho Ming Yuen, Joseph J. Vettukattil, Gruschen Veldman, James Gnanapragasam, Kevin Roman, Anthony P. Salmon and Marcus P. Haw
Ann Thorac Surg 2010;90:830-837
Outcomes for Repair of Subaortic Stenosis

- Mortality 2%
- Recurrent LVOTO 15-20%
- Permanent pacer 2-15%
Fig 3. Overall actuarial survival after reoperation for relief of left ventricular outflow tract obstruction is shown. There was a significant difference ($p < 0.001$) when compared with an age-matched and gender-matched healthy population.
Morphology of LVOT in AVSD

- “Unwedged” aorta
- Inlet/outlet septal length disparity
- Muscular septal deficiency ("septal scoop")
- Anterolateral muscle bundle of LV
- Anomalies of subvalvar AV apparatus
Morphology of LVOT in AVSD

- “Unwedged” aorta
- Inlet/outlet septal length disparity
- Muscular septal deficiency ("septal scoop")
- Anterolateral muscle bundle of LV
- Anomalies of subvalvar AV apparatus
Morphology of LVOT in AVSD

- “Unwedged” aorta
- Inlet/outlet septal length disparity
- Muscular septal deficiency (“septal scoop”)
- Anterolateral muscle bundle of LV
- Anomalies of subvalvar AV apparatus
Morphology of LVOT in AVSD; Abnormal Septal Geometry

Fig. 1. Diagram showing the measurements made on the left ventricular aspect to determine the inlet, outlet, and (in the case of the atrioventricular septal defects) the degree of “scooping” of the ventricular septum. AV, Atrioventricular.

Morphology of LVOT in AVSD: Ventricular Septal “Scoop”

Ventricular Scoop in Atrioventricular Septal Defect: Relevance to Simplified Single-Patch Method

Iki Adachi, MD, Siew Yen Ho, PhD, FRCPath, Karen P. McCarthy, BS, and Hideki Uemura, MD, FRCS
Cardiac Morphology Unit, National Heart & Lung Institute, Imperial College London, and Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Trust, London, United Kingdom

Ann Thor Surg 2009;87:198-203

• 50% of CAVSD specimens had anterosuperior extension of septal scoop
• Those with such extension had significantly narrower LVOT
• Depth of scoop did not affect LVOT diameter
Morphology of LVOT in AVSD

- “Unwedged” aorta
- Inlet/outlet septal length disparity
- Muscular septal deficiency (“septal scoop”)
- Anterolateral muscle bundle of LV
- Anomalies of subvalvar AV apparatus
Morphology of LVOT in AVSD: Anterolateral Muscle Bundle of LV

Morphology of LVOT in AVSD: Anterolateral Muscle Bundle of LV

- Horizontal bar between ALMV and LCC in LVOT
- Present in 40% of normal hearts

Morphology of LVOT in AVSD: Anterolateral Muscle Bundle of LV

- Present in all AVSD specimens (n=77)
- Mild to moderate hypertrophy in 43%
- Unequivocal LVOTO in 6%

Morphology of LVOT in AVSD

- “Unwedged” aorta
- Inlet/outlet septal length disparity
- Muscular septal deficiency (“septal scoop”)
- Anterolateral muscle bundle of LV
- Anomalies of subvalvar AV apparatus
Morphology of LVOT in AVSD: Subvalvar AV Apparatus
Morphology of LVOT in AVSD: Subvalvar AV Apparatus
Outcomes for LVOTO Surgery After AVSD Repair

SUBAORTIC STENOSIS IN THE SPECTRUM OF ATRIOVENTRICULAR SEPTAL DEFECTS Solutions may be complex and palliative

Glen S. Van Arsdell, Mda(by invitation), William G. Williams, MDa, Christine Boutin, MDb(by invitation), George A. Trusler, MDa, John G. Coles, MDa, Ivan M. Rebeyka, Mda (by invitation), Robert M. Freedom, MDb, c(by invitation)

Toronto, Ontario, Canada

19 patients
18/19 fibrous resection ,7/19 LAVV procedure
Freedom from reoperation 66\% at 6 years
Outcomes for LVOTO Surgery After AVSD Repair

SUBAORTIC STENOSIS IN THE SPECTRUM OF ATRIOVENTRICULAR SEPTAL DEFECTS Solutions may be complex and palliative

Glen S. Van Arsdell, Mda(by invitation), William G. Williams, MDa, Christine Boutin, MDb(by invitation), George A. Trusler, MDa, John G. Coles, MDa, Ivan M. Rebeyka, Mda (by invitation), Robert M. Freedom, MDb, c(by invitation)

Toronto, Ontario, Canada

“Standard fibromyectomy for subaortic stenosis in children with atrioventricular septal defect leads to a high rate of reoperation.”
Outcomes for LVOTO Surgery After AVSD Repair

SUBAORTIC STENOSIS IN THE SPECTRUM OF ATRIOVENTRICULAR SEPTAL DEFECTS Solutions may be complex and palliative

Glen S. Van Arsdell, Mda(by invitation), William G. Williams, MDa, Christine Boutin, MDb(by invitation), George A. Trusler, MDa, John G. Coles, MDa, Ivan M. Rebeyka, Md a(by invitation), Robert M. Freedom, MDb, c(by invitation)

Toronto, Ontario, Canada

“Because of the potential for multiple causes of obstruction, a tailored operation may be necessary.”
Outcomes for LVOTO Surgery After AVSD Repair

56 patients
41 fibrous resection, 22 LAVV procedure,
27 myectomy, 5 modified Konno, 9 Ao valve repair
Freedom from reoperation 81% at 5 years
“…LVOTO in AVC is a complex, multifactorial disease that is difficult to address. Aggressive surgical repair has improved late outcomes; however, risk factors for reoperation, and the ideal approach for repair remain to be defined.”
Surgical Options for LVOTO After AVSD Repair

• Transaortic resection

• Modified Konno

• Leaflet resuspension
Surgical Options for LVOTO
Modified Konno

Surgical Options for LVOTO
Modified Konno

- Recurrent, complex, multilevel LVOTO
- Distal LVOT visualization key
- Risks: ventriculotomy, residual VSD, aortic valve injury
Surgical Options for LVOTO
Leaflet Resuspension

Surgical Options for LVOTO
Leaflet Resuspension

• Partial or Transitional AVSD

• Limited data

• Impact limited by chordal length
Pre- Repair TEE
MOVIE
Post Repair TEE
Conclusions

• Incidence of LVOTO after AVSD repair ~ 2%
• Anatomic basis of LVOTO after AVSD repair is multifactorial
• Role of surgical technique is creating LVOTO unclear
Conclusions

• Surgery must address fibromuscular, valvar, and septal/tunnel elements of LVOTO
• Transaortic resection is usually effective
• Modified Konno and leaflet resuspension are useful adjuncts
Thank You!
Reoperation for Left Ventricular Outflow Tract Obstruction After Repair of Atrioventricular Septal Defect

David M. Overman
Division of Pediatric Cardiac Surgery
The Children’s Heart Clinic
Chief, Division of Cardiovascular Surgery
Children’s Hospitals and Clinics of Minnesota
Repair of Subaortic Stenosis in Atrioventricular Canal With Absent or Restrictive Interventricular Communication by Patch Augmentation of Ventricular Septum, Resuspension of Atrioventricular Valves, and Septal Myectomy

Jacques A. M. van Son, M.D., Ph.D., Peter Schneider, M.D., and Volkmar Falk, M.D.