Surgery for MDR/XDR Tuberculosis and Non-Tuberculcous Mycobacterial Disease

John D. Mitchell, M.D.
Professor and Chief
Section of General Thoracic Surgery
Davis Endowed Chair in Thoracic Surgery
University of Colorado School of Medicine
Consultant, National Jewish Health
No relevant financial relationships to disclose.
Surgery for Drug-Resistant Tuberculosis

Indications

Eradicate TB Infection:
- Localized disease amenable to resection
- Persistent cavitary disease
- Persistent positive sputum with/without cavity
- Destroyed lung

Complications of TB Infection:
- Massive hemoptysis
- Bronchopleural fistula
- Bronchial stenosis
- Trapped lung
Worldwide Incidence of Tuberculosis
December, 2011

Multidrug and Extensively Drug Resistant Tuberculosis

9 million TB cases

Drug Susceptible

Any Drug Resistance

MDR-TB

XDR-TB

Resistance to at least isoniazid and rifampin (MDR) plus resistance to fluoroquinolones and one of the second-line injectable drugs (amikacin, kanamycin, or capreomycin)
Worldwide Incidence of Tuberculosis
December, 2011

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimated number of cases, 2011</th>
<th>Estimated number of deaths, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>All forms of TB</td>
<td>8.7 million (8.3–9.0 million)</td>
<td>0.99 million* (0.8–1.1 million)</td>
</tr>
<tr>
<td>HIV-associated TB</td>
<td>1.1 million (1.0–1.2 million)</td>
<td>430,000 (400,000–460,000)</td>
</tr>
<tr>
<td>Multidrug-resistant TB</td>
<td>630,000 (460,000–790,000)</td>
<td>out of ~12 million prevalent TB cases</td>
</tr>
</tbody>
</table>

* Excluding deaths attributed to HIV/TB

Multi-Drug Resistant Tuberculosis
December, 2011

Percentage of cases

- 0-2.9
- 3-5.9
- 6-11.9
- 12-17.9
- ≥ 18
- No data
- Subnational data only
- Not applicable

Extreme-Drug Resistant Tuberculosis
Fall, 2012

MDRTB Treatment
Percentage of MDRTB Cases receiving treatment

Overall: 20%

Adequate: < 10%

Worldwide MDRTB Treatment Success
2009

THE STOP TB STRATEGY
Building on and enhancing DOTS to meet the TB-related Millennium Development Goals

THE GLOBAL PLAN TO STOP TB 2011–2015
Transforming the Fight
TOWARDS ELIMINATION OF TUBERCULOSIS
Designing a Treatment Regimen

General Principles

• Early DR-TB detection/prompt initiation of therapy

• Regimens should be based on:
 • the history of drugs taken by the patient
 • drugs and regimens used in the country and
 • the prevalence of resistance

• Regimens should consist \(\geq 4 \) effective drugs

• When possible, once daily dosing is recommended

• Drug dosage should be determined by body weight

WHO Guidelines for the Programmatic Management of Drug-Resistant TB2008
Building a Treatment Regimen in MDRTB

Step 1
- Group 1
 - Ethambutol
 - Pyrazinamide

Step 2
- Group 2
 - Streptomycin
 - Kanamycin
 - Amikacin
 - Capreomycin

Step 3
- Group 3
 - Levofloxacin
 - Moxifloxacin
 - Ofloxacin

Step 4
- Group 4
 - Ethionamide
 - Protonamide
 - Cycloserine
 - Terizidone
 - P-aminosalicylic acid

Step 5
- Group 5
 - Clofazimine
 - Imipemen
 - Amoxacillin/Clavulanate
 - Macrolides
 - Linezolid
 - Thioacetzone
 - High-dose INH

Goal: at least 4 effective drugs
Drug Resistant Tuberculosis

Predictors of Success and Failure

<table>
<thead>
<tr>
<th>Success</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Use of pyrazinamide and/or ethambutol, if susceptible</td>
<td>- Previous therapy</td>
</tr>
<tr>
<td>- Use of a fluoroquinolone</td>
<td>- Number of drugs resistant</td>
</tr>
<tr>
<td>- Use of > 5 drugs</td>
<td>- Resistance to FQN</td>
</tr>
<tr>
<td>- Sputum conversion by 2 mos</td>
<td>- Resistance to capreomycin</td>
</tr>
<tr>
<td>- Surgical resection</td>
<td>- Presence of cavitation</td>
</tr>
<tr>
<td></td>
<td>- Low BMI</td>
</tr>
<tr>
<td></td>
<td>- HIV infection</td>
</tr>
<tr>
<td></td>
<td>- Poor adherence</td>
</tr>
<tr>
<td></td>
<td>- Positive cultures at 2-3 mos</td>
</tr>
<tr>
<td></td>
<td>- XDR-TB</td>
</tr>
</tbody>
</table>
Surgery for MDR-TB, XDR-TB

Factors favoring Surgery

• A pattern of drug-resistance so extensive that it compromises the likelihood of medical cure

• Localized lung damage (cavitation, destroyed lung) that might be a focus of persistent disease and/or further acquired resistance

• Allergies or intolerance to essential medications that might afford cure

• Lack of access to curative chemotherapy
Surgery for MDR-TB, XDR-TB

Risks/Benefits

• Benefits
 – Rapid bacteriologic conversion
 – Removal of bronchiectatic/fibrotic lung
 – Increased chance of cure in some patients

• Risks
 – Morbidity and mortality related to surgery
 – Potential long-term functional deficits
 – Transmission in the health facility
Surgery for MDR-TB

Current Results

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Number</th>
<th>Operations</th>
<th>Mortality</th>
<th>Morbidity</th>
<th>Cure rate (negative sputum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Leuven</td>
<td>1997</td>
<td>62</td>
<td>62</td>
<td>1.6%</td>
<td>23%</td>
<td>80%</td>
</tr>
<tr>
<td>Sung</td>
<td>1999</td>
<td>27</td>
<td>27</td>
<td>0%</td>
<td>25.9%</td>
<td>96.3%</td>
</tr>
<tr>
<td>Pomerantz</td>
<td>2001</td>
<td>172</td>
<td>180</td>
<td>3.3%</td>
<td>12%</td>
<td>98%</td>
</tr>
<tr>
<td>Shiraishi</td>
<td>2004</td>
<td>87</td>
<td>95</td>
<td>0%</td>
<td>11.5%</td>
<td>93%</td>
</tr>
<tr>
<td>Naidoo</td>
<td>2005</td>
<td>23</td>
<td>23</td>
<td>0%</td>
<td>17.4%</td>
<td>95.6%</td>
</tr>
<tr>
<td>Dewan</td>
<td>2006</td>
<td>74</td>
<td>74</td>
<td>4.1%</td>
<td>32%</td>
<td>89.8%</td>
</tr>
<tr>
<td>Kir</td>
<td>2006</td>
<td>79</td>
<td>81</td>
<td>2.5%</td>
<td>25%</td>
<td>94.5%</td>
</tr>
<tr>
<td>Mohsen</td>
<td>2007</td>
<td>23</td>
<td>23</td>
<td>4.3%</td>
<td>34.7%</td>
<td>96.0%</td>
</tr>
<tr>
<td>Somocurcio</td>
<td>2007</td>
<td>121</td>
<td>121</td>
<td>5.0%</td>
<td>22.6%</td>
<td>63.0% at 6 months</td>
</tr>
</tbody>
</table>
Surgery for MDR-TB
Current Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Success (95% CI)</th>
<th>Failure (%)</th>
<th>Relapse (%)</th>
<th>Death (%)</th>
<th>Default (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomerantz et al.</td>
<td>92 (87–96)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Park et al.</td>
<td>94 (83–99)</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>76 (68–83)</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Somocurcio et al.</td>
<td>63 (54–71)</td>
<td>11</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Leuven et al.</td>
<td>77 (65–87)</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Sung et al.</td>
<td>74 (54–89)</td>
<td>19</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chiang et al.</td>
<td>88 (70–98)</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naidoo et al.</td>
<td>96 (78–100)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kwon et al.</td>
<td>89 (73–97)</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Park et al.</td>
<td>84 (60–97)</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kir et al.</td>
<td>89 (79–95)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mohseni et al.</td>
<td>91 (72–99)</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>88 (76–95)</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shiraishi et al.</td>
<td>91 (80–97)</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Kang et al.</td>
<td>90 (81–96)</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Summary

- Treatment success (%)
 - 84 (78–89)
 - $I^2 = 79$
 - $P < 0.001$

- Other statistics:
 - 6 (4–8)
 - 3 (1–4)
 - 5 (2–8)
 - 3 (1–5)

University of Colorado
Anschutz Medical Campus
Role of Surgery in MDR-TB
UCH-NJH Experience

• 205 patients between 1984-1998

• Resistance to median of 6 drugs

• Treated with a median of 6 drugs

• 130 patients had at least one resection

• Surgery, FQN associated with favorable response

Role of Surgery in MDR-TB
UCH-NJH Experience

Odds Ratios for Individual Variables

Drug resistance (#) \(p < 0.0001 \)

Current drug suscept. (#) \(p = 0.0004 \)

Surgery done \(p = 0.0008 \)

FQN used \(p = 0.02 \)

Non-extensive disease \(p = 0.48 \)

Role of Surgery in MDR-TB
UCH-NJH Experience

Chan ED, et al. AJRCCM 2004;169:1103
Surgery for MDR-TB
Istanbul, Turkey

- 252 MDR-TB patients

- Success related to:
 - Less drug resistance
 - Female
 - Younger age
 - Limited disease

- Results consistent with data from Japan, Korea, Tiawan, and Latvia

Surgery for MDR/XDR-TB

Seoul, South Korea

<table>
<thead>
<tr>
<th>Treatment Outcome</th>
<th>MDR TB (n = 46)</th>
<th>XDR TB (n = 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cure</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Probable cure</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Treatment completion</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Unfavorable outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment failure</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Death</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Default</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Transfer out</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

MDR TB = multidrug-resistant tuberculosis; XDR TB = extensive drug-resistant tuberculosis.
Nontuberculous Mycobacteria (NTM)

• AKA: Atypical mycobacteria
 Environmental mycobacteria (EM)
 Mycobacteria other than tuberculosis (MOTT)

• Found in water, soils, food, on surfaces
• Resistant to chlorination, disinfectants
• Not obligate pathogens
• No person to person disease transmission
Nontuberculous Mycobacteria

Common NTM Species

• Slow growing mycobacteria
 – M. avium complex (MAC)
 – M. kansasii
 – M. xenopi
 – M. simiae

• Rapid growing mycobacteria
 – M. abscessus
 – M. fortuitum
 – M. chelonae
Nontuberculous Mycobacteria
Common NTM Species

• Slow growing mycobacteria
 – M. avium complex (MAC)
 – M. kansasii
 – M. xenopi
 – M. simiae

• Rapid growing mycobacteria
 – M. abscessus
 – M. fortuitum
 – M. chelonae
Nontuberculous Mycobacteria

Comparison with Tuberculosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>TB</th>
<th>NTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB (+)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Person to person transmission</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Reportable disease</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Incidence increasing in US</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Significant drug resistance seen</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Nontuberculous Mycobacteria

Diagnosis

• Presenting symptoms include chronic productive cough, dyspnea, hemoptysis, fatigue, recurrent pneumonias, fever

• Distinction between colonization, contamination and true infection can be difficult

• Diagnosis usually requires presence of symptoms, characteristic radiologic findings and repeated (2-3) positive cultures/smears after malignancy, TB and fungal disease excluded
Nontuberculous Mycobacteria

Therapy

- Therapy directed in part by susceptibility testing, and should be continued 12 months after Culture (-)

- MAC: macrolide, rifampin, ethambutol, ± amikacin
- M kansasii: rifampin, ethambutol, INH ± macrolide
- M abscessus: macrolide, amikacin, cefoxitin, imipenum

- Indications for surgery include persistent, focal (cavitary or bronchiectatic) parenchymal disease after antimicrobial treatment
Surgery for Pulmonary NTM Disease

Presentation

• Middle-aged females, thin, Caucasian, nonsmokers, right middle lobe / lingular disease

• Isolated large, thick-walled cavitary disease.

• Elderly men, smokers, ETOH abuse, underlying COPD. Resembles TB, may progress to complete lung destruction.
Surgery for Pulmonary NTM Disease

Presentation

- Middle-aged females, thin, Caucasian, nonsmokers, right middle lobe / lingular disease

- Isolated large, thick-walled cavitary disease.

- Elderly men, smokers, ETOH abuse, underlying COPD. Resembles TB, may progress to complete lung destruction.
Surgery for Pulmonary NTM Disease

Presentation

- Middle-aged females, thin, Caucasian, nonsmokers, right middle lobe / lingular disease

- Isolated large, thick-walled cavitary disease.

- Elderly men, smokers, ETOH abuse, underlying COPD. Resembles TB, may progress to complete lung destruction.
Surgery for Pulmonary NTM Disease
Results of Surgical Therapy

• Corpe, 1981: 131 cases, mortality 6.9%, BPF 5.3%, 93% sputum conversion rate

• Nelson, 1998: 28 cases, mortality 7.1%, BPF 3.6%, complication rate 32%, 88% sputum conversion rate

• Shiraishi, 2002: 21 cases, mortality 0%, complication rate 29%, sputum conversion 100% → 90% at 2 years

• Mitchell, 2008: 265 cases, mortality 2.6%, complication rate 18%, BPF 4.2%, 87% sputum conversion rate
Surgery for Pulmonary NTM Disease

BPF after Pneumonectomy

- Bronchopleural fistula rate 4.2 % (11/265)
- All had MAC; (+) sputum in 10/11 patients (91%)
- Right pneumonectomy in 9/11 patients (82%)
 - Right pneumonectomy 9/27 (33%)
 - Simple right pneumonectomy 4/16 (25%)
 - Completion right pneumonectomy 4/8 (50%)
- For right pneumonectomy, use of transposed muscle led to a lower rate of BPF formation (26%) than when muscle was not used (50%)
- Lobectomy/Segmentectomy BPF rate: 0.9%

Surgery for Pulmonary NTM Disease

BPF after Pneumonectomy

Shiraishi, 2004: 11 pneumonectomies (5 right, 6 left) for NTM disease

- No mortality; all patients achieved sputum conversion

- BPF rate 27% (3/11 patients)
 - all right side, all covered with muscle
 - Treated with re-closure successfully; one empyema

Shiraishi, 2010: MDR-TB vs. NTM pneumonectomy

- No operative mortality

- MDR-TB: 22 patients (7 right, 15 left)
 - Male 72%, Sputum negative 63%
 - BPF rate 4.5% (1 right)

- NTM: 11 patients (7 right, 4 left)
 - Female 72%, Sputum negative 9%
 - BPF rate 45% (4 right, 1 left)
Surgery for Pulmonary NTM Disease

BPF Reduction Strategies

• Maximize preoperative antibiotic regimen

• Bronchial stump closure

• Muscle flap transposition

• Omental transposition

• ? Eloesser flap
Lung Resection in MDRTB, NTM Cases

Things to Consider…..

- What is the goal of the operation?
- Encourage a multidisciplinary approach
- Is it the right time to operate?
- What is the nutritional status of the patient?
Lung Resection in MDRTB, NTM Cases

Things to Consider…..

• Choose best surgical approach

• Culture all specimens

• Address space issues within hemithorax

• Buttressing of bronchial closure
 – drug resistant organisms
 – poorly controlled infection
Conclusions

- Anatomic lung resection is clearly of benefit for those with MDRTB/XDRTB with acceptable morbidity and mortality

- Lung resection may be accomplished in those with NTM disease with acceptable morbidity and mortality, although further studies are needed to define the long term benefit

- Proper patient selection, multidisciplinary approach are keys factors for success

- Many patients may be amenable to thoracoscopic techniques

- Risk of BPF after right pneumonectomy in NTM patients is high