Surgical Ablation of Atrial Fibrillation Over Two Decades: Are Results of New Techniques Equivalent to the Cox-maze III Procedure?

Stulak JM, Suri RM, Burkhart HM, Daly RC, Dearani JA, Greason KL, Joyce LD, Park SJ, Schaff HV

Division of Cardiovascular Surgery
Mayo Clinic, Rochester

www.aats.org
Disclosure

Mayo Clinic Division of Cardiovascular Surgery

Research funding within the past year:

AstraZeneca
Atricure
Avant Immunotherapeutics
Baxter
Carbomedics/Sorin Group
CryoLife

Jarvik Heart
Medtronic
St. Jude Medical
Thoratec Corporation
TransTech Pharma
W.L. Gore and Associates

No personal equity, patents, licensing, or consulting agreements with the medical device or pharmaceutical industry to disclose.
Background

- Significant evolution in surgical ablation for AF
- Intended to simplify the Cox-maze III operation and maintain similar outcomes
- Alternate energy sources, modified lesion sets, and varied approaches
Practice Trends

Alternative

CSM
January 1993 – January 2011

Total
n = 1,189

Biatrial
n = 810

- CS, n = 514
- RF, n = 56
- Cryo, n = 144
- Combo, n = 96

PVI
n = 269

- CS, n = 2
- RF, n = 181
- Cryo, n = 67
- Combo, n = 19

LA Maze
n = 110

- CS, n = 5
- RF, n = 25
- Cryo, n = 55
- Combo, n = 25
Preoperative Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CSM</th>
<th>PVI</th>
<th>LA</th>
<th>BA-A</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>62</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td><0.05</td>
</tr>
<tr>
<td>PAF</td>
<td>33%</td>
<td>81%</td>
<td>75%</td>
<td>43%</td>
<td><0.05</td>
</tr>
<tr>
<td>DM</td>
<td>8%</td>
<td>13%</td>
<td>10%</td>
<td>14%</td>
<td>0.03</td>
</tr>
<tr>
<td>HTN</td>
<td>52%</td>
<td>69%</td>
<td>59%</td>
<td>61%</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Operative Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CSM</th>
<th>PVI</th>
<th>LA</th>
<th>BA-A</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV surg</td>
<td>60%</td>
<td>39%</td>
<td>87%</td>
<td>69%</td>
<td><0.05</td>
</tr>
<tr>
<td>XC</td>
<td>59</td>
<td>65</td>
<td>81</td>
<td>85</td>
<td><0.05</td>
</tr>
<tr>
<td>CPB</td>
<td>103</td>
<td>90</td>
<td>109</td>
<td>119</td>
<td><0.05</td>
</tr>
<tr>
<td>LAA lig.</td>
<td>100%</td>
<td>70%</td>
<td>80%</td>
<td>74%</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Early Non-fatal Morbidity

<table>
<thead>
<tr>
<th></th>
<th>CSM</th>
<th>PVI</th>
<th>LA</th>
<th>BA-A</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>6%</td>
<td>3%</td>
<td>1%</td>
<td>5%</td>
<td>0.04</td>
</tr>
<tr>
<td>Stroke</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
<td>0.66</td>
</tr>
<tr>
<td>RF</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>0.13</td>
</tr>
<tr>
<td>PPM</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
<td>7%</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Follow-up

CSM 18.5 yr → 57 mos.
PVI 8 yr → 30 mos.
LA 10.2 yr → 26 mos.
BA-A 9.5 yr → 26 mos.
Multivariate Logistic Regression

- < 1 year
 - Age (per 5 years) (H.R.: 1.44 [1.2, 1.7])

- 1 – 5 years
 - Preop PAF (H.R.: 0.33 [0.2, 0.5])
 - Cox-maze III (H.R.: 0.4 [0.2, 0.7])
 - MV surgery (H.R.: 0.6 [0.4, 0.96])
 - Age (per 5 years) (H.R.: 1.1 [1, 1.2])

- > 5 years
 - Cox-maze III (H.R.: 0.23 [0.12, 0.42])
 - Preop PAF (H.R.: 0.36 [0.2, 0.66])
 - NYHA III/IV (H.R.: 1.84 [10.4, 3.27])
Summary and Conclusions

- Heterogeneity confers challenges in evaluating outcomes

- While new technology offers multiple benefits, transmural lesions assured with Cox-maze III procedure

- Cox-maze III procedure appears to remain gold standard for surgical AF ablation
Thank You!