Repair of Mitral Valve Prolapse with a Novel Leaflet Plication Clip in an Animal Model

Eric N. Feins¹, Haruo Yamauchi¹, Gerald R. Marx², Franz P. Freudenthal³, Hua Liu¹, Pedro J. del Nido¹, Nikolay V. Vasilyev¹

¹Department of Cardiac Surgery, Boston Children’s Hospital
²Department of Cardiology, Boston Children’s Hospital
³Department of Pediatric Cardiology, Kardiozentrum, La Paz, Bolivia

May 8, 2013
Disclosures

Franz Freudenthal, MD is employed by PFM Bolivia – the manufacturer of the device prototype.

Funding: NIH – National Heart, Lung and Blood Institute. Grant #: 5R01HL073647. “Image-guided Intracardiac Beating-Heart Surgery” (PJdN)

The equipment & technology used in this study were purchased using academic funds. The authors had full control of the study design, methods used, outcome measurements, analysis of data, and production of the written report.
Background

- Mitral regurgitation (MR) is the 2nd most common valve-related indication for cardiac surgery
- Degenerative MV disease is the predominant pathology:
 - Chordae tendineae elongation/rupture
 - Excessive/redundant leaflet tissue

Leaflet prolapse \rightarrow Malcoaptation \rightarrow MR

Adapted from Cohn LH, ed. Cardiac Surgery in the Adult. 2008. McGraw-Hill
Mitral Valve Repair

Segmental leaflet resection

Leaflet plication “foldoplasty”

- Mitral valve repair outcomes: 12.6% composite adverse events rate
- Many high-risk patients are deemed non-operative candidates
- **Emergence of minimally-invasive & beating-heart repair techniques**

Beating-Heart Mitral Valve Repair

- Numerous devices in development
 - Indirect annuloplasty via coronary sinus
 - Artificial chordae implantation
 - *Edge-to-edge leaflet repair*

MitraClip
(Abbott Vascular)

- No devices achieve isolated *leaflet plication*

Adapted from Chiam PTL, Ruiz CE. Percutaneous Transcatheter Mitral Valve Repair: A classification of the technology. JACC: Cardiovascular interventions. 2011; 2(1) 1-13.

Leaflet Plication Clip

- Folded nitinol wire
 - 0.44mm diameter
 - Central loop (*)
 - Sharpened arms (△)
- Opened state for leaflet grasping
- Closed, resting state for leaflet plication
- Deployment device for open-heart implantation/testing
Implantation & Mechanism of Action
Study Aim & Design

• Assess short-term performance of the leaflet plication clip for MVP repair in an animal model

• Open-heart clip implantation

• Echocardiographic assessment
Methods

- Yorkshire female swine (N=7, weight = 60-73kg)
- Surgery:
 - Left thoracotomy (4
th intercostal space)
 - 2D/3D epicardial echo (baseline)
 - Cardiopulmonary bypass #1
 - Open-heart chordae cutting via left atriotomy → MR creation
 - 2D/3D epicardial echo (off bypass)
 - Cardiopulmonary bypass #2
 - Open-heart Leaflet plication clip application
 - Direct/epicardial echo off CPB (2hr post)
 - Euthanasia & explant
Echocardiographic Analysis

- **MR Grade:**
 - 2D color Doppler imaging
 - 0-4 scale: None (0), Trivial (1), Mild (2), Moderate (3), Severe (4)

- **Vena contract area**

- **Coaptation height (CH)**

- **Posterior mitral leaflet mobility ($\Delta \theta$)**
 - ($\Delta \theta$) = $\theta_d - \theta_s$
 - θ_d = diastolic posterior leaflet angle
 - θ_s = systolic posterior leaflet angle
Results

• All animals survived the surgical procedure
• 2-4 primary and secondary chordae were cut in each animal to create MVP/MR
• Successful clip implantation in all cases without significant leaflet trauma
• No evidence of thrombosis on/around clip
• No evidence of clip embolism
• 2 cases of slight clip movement
 – tangling with underlying 2° chordae
 – shifting to oblique position
MR Grade (2D color Doppler)

Baseline

Post-Chordae cutting – P2 flail

Post-Clip placement
Median MR grade: Trivial (1+) \rightarrow Moderate-severe (3.5) \rightarrow Mild (2+)
Vena Contract Area

Mean VCA: 0.08cm\(^2\) → 0.21cm\(^2\) → 0.16cm\(^2\)
Coaptation Height & Leaflet Mobility

Coaptation Height

Posterior Leaflet Mobility

Leaflet Mobility, Δθ (°)

<table>
<thead>
<tr>
<th></th>
<th>Pre-MR</th>
<th>Post-MR</th>
<th>Clip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaflet Mobility</td>
<td>40.0</td>
<td>45.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

NS
Conclusions & Future Work

• The leaflet plication clip reduces **MR grade** in the setting of MVP in an acute animal model by solely plicating the prolapsed segment
• **Coaptation height** is restored to baseline
• **Leaflet mobility** is not hindered by the clip

• Adjunctive repair techniques (annuloplasty)
• Minimally-invasive development
 – “Mini-mitral” & Robotic techniques
 – Image-guided beating-heart approaches
Thank You