Acute Aortic Dissection: Decision and Outcome

Marc R. Moon, M.D.

John M. Shoenberg Chair in CV Disease
Chief, Cardiac Surgery
Director, Center for Diseases of the Thoracic Aorta
Washington University School of Medicine
St. Louis, MO USA

AATS/STS Adult Cardiac Surgery Symposium
95th Annual Meeting, Seattle, Sunday April 26, 2015

Disclosures: NONE
Acute Aortic Dissection

DECISION and OUTCOME

• Clinical presentation
• How do we image them?
• How do we treat them?
• Cerebral protection
• Long-term expectations
Acute Aortic Dissection

CARDINAL FEATURES

- Most common catastrophe involving the aorta
- Relatively rare cause of chest pain
 - Prevalence of CAD 100-200 times > AAD
 - 3 ADD for each 1,000 pts presenting to ER with CP/BP
- Morbidity and mortality remain high
Clinical Presentation

IRAD DATABASE

- Clinical manifestations are protean
- Diagnosis is Challenging! – Missed on initial exam in 38%
- Severe “worst ever” pain in 85%
 - Sharp in 65% > tearing/ripping
 - Localized to chest in 73%
 - Type B more often in back/abdo, but substantial overlap
- Abdominal pain only (no CP/BP) in 5%
 - Most often type B, ↑ mortality (28% vs. 10%)
 - mesenteric ischemia rare (4%) → poor prognosis (63% vs. 24%)
Acute Aortic Dissection

SIDE BRANCH INVOLVEMENT

- Renal 23-75%
- Peripheral 25-60%
- Mesenteric 10-20%
- Coronary 5-11%
- Cerebral 3-13%
- Spinal 2-9%
Acute Aortic Dissection

DECISION and OUTCOME

- Clinical presentation
- How do we image them?
- How do we treat them?
- Cerebral protection
- Long-term expectations
Aortic Dissection

CT Scan Imaging
Aortic Dissection
CT Scan Imaging
Aortic Dissection
Magnetic Resonance Imaging

DeBakey II
Stanford A

DeBakey III
Stanford B
Aortic Dissection
Transesophageal Imaging
Choice of Imaging Study

IRAD DATABASE

- 628 patients – First diagnostic modality:
 - CT scan: 63%
 - TEE: 32%
 - Aortography: 4%
 - MRI: 1%
- 70% had multiple studies
- Sensitivity:

<table>
<thead>
<tr>
<th>Imaging Modality</th>
<th>TYPE A</th>
<th>TYPE B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT scan</td>
<td>93%</td>
<td>93%</td>
</tr>
<tr>
<td>TEE</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Aortography</td>
<td>87%</td>
<td>89%</td>
</tr>
<tr>
<td>MRI</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Moore et al.
Am J Cardiol 2002;89:1235
Acute Aortic Dissection

DECISION and OUTCOME

• Clinical presentation
• How do we image them?
• How do we treat them?
• Cerebral protection
• Long-term expectations
Acute Aortic Dissection

NATURAL HISTORY

• Lethal if undiagnosed early & not treated appropriately
 – 30% mortality by 24 hrs, 50% by 48 hrs, 90% by 3 months
• Hirst et al. – 505 patients with acute Ao dissection (1958)
• **Type A Dissection**
 - All patients deemed survivable (>80, CVA, CPR in OR)
 - Intramural Hematoma? (35% risk of rupture)

• **Type B Dissection**
 - β-blockers initially, then vasodilators (afterload > NTG)
 - Decreasing BP from HTN levels can reverse malperfusion
 - Surgical Tx: rupture “impending rupture” (not pleural effusion), malperfusion (endovascular), persistent pain
• Goals of Surgical Therapy
 – Obviate the usual causes of death (local phenomenon in 60-90% of cases)
 – Reconstitute distal flow in the true lumen
 – Correct compromise of contiguous Ao branches (coronary, innominate, carotid)
 – Restore aortic valve competence
 – Resect primary intimal tear (if exposed)
 – Eliminate flow in false lumen? (seldom accomplished)
Acute Aortic Dissection
SURGICAL INTERVENTION
Acute Type A Dissection
What is a Safe and Durable Surgical Strategy?

Surgery for Acute Type A Aortic Dissection
Tirone E. David, MD, Susan Armstrong, MSc, Joan Ivanov, MSc, and Sion Barnard, MB
Division of Cardiovascular Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada

- Pts were dying despite their best efforts!
- Dramatic reduction in mortality after adoption of reproducible repair technique
 - no cross clamp, resection of primary tear, antegrade reperfusion
- Suggested improved early and late outcomes

David et al.
ATS 1999; 67:1999
Incidence of AVR and Hemiarch Replacement by Era:

AVR
- 1984-1990: 60%
- 1991-1995: 40%
- 1996-2000: 20%
- 2001-2006: 0%

Hemiarch
- 1984-1990: 60%
- 1991-1995: 40%
- 1996-2000: 20%
- 2001-2006: 0%

p < 0.001 for AVR.
p = 0.01 for Hemiarch.

Zierer et al.
ATS 2007;83:2122
• 25-year period: 1984 to 2009, 26 surgeons
• 201 patients: 158 men (63%), 94 women (37%)
• Mean age: 60 ± 16 years, range 18 to 88 years
• Operative mortality 16% ± 3%

ATS 2007;83:2122
Acute Type A Dissection
What is a Safe and Durable Surgical Strategy?

• At Wash U, 196 acute type A (1996-2012)
 – Group 1 (Classic David): No X-clamp, DHCA, antegrade reperfusion – 49 pts
 – Group 2-6: All other strategies – 147 pts

<table>
<thead>
<tr>
<th>Group</th>
<th>Aortic Cross Clamp</th>
<th>DHCA</th>
<th>Antegrade Reperfusion</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>56</td>
</tr>
</tbody>
</table>

Lawton et al.
JTCVS 2015 (in press)
• **Classic David** (No X-clamp, DHCA, antegrade reperfusion) vs **Other Strategies**:
 - No difference in operative mortality or morbidity
 - No difference in FL patency
 - **Long-term survival impaired with non-David strategy**
Acute Aortic Dissection

DECISION and OUTCOME

- Clinical presentation
- How do we image them?
- How do we treat them?
- Cerebral protection
- Long-term expectations
Surgery for Type A Dissection
CEREBRAL PROTECTION

- Crawford’s classic dictum: With HCA:
 - >40 minutes → Stroke
 - >65 minutes → Death
- Retrograde Cerebral Perfusion
 - Maintains brain cooling
 - Retrograde flushing of debris
 - Only 10-15% of nutrient flow
- Antegradce Cerebral Perfusion
 - ↑ nutrient flow
 - ↑ “safe” circulatory arrest time?
 - Allows warmer perfusion?
• HCA with ACP (28°C): Frankfurt & Bad Neustadt (AATS 2012, 2013)
 – 1,002 pts: ↑mortality with HCA > 30 min
• Unilateral vs. Bilateral ACP – 1097 pts, elective arch, propensity matched
 – No difference in mortality or TND, but
 – ↑CVA with bilateral (6% vs. 2%, p=.06)
Surgery for Type A Dissection

CEREBRAL PROTECTION

- CA Time 0-30 min: Any approach seems adequate
- CA Time 30-45 min: RCP / ACP
- CA Time > 45 min: ACP?

- ACP can be unilateral, but only with cerebral oximetry
Acute Aortic Dissection
DECISION and OUTCOME

- Clinical presentation
- How do we image them?
- How do we treat them?
- Cerebral protection
- Long-term expectations
Acute Type A Dissection

LATE REOPERATION – Wash U.

- Unrelated to initial surgical technique (prox/distal extent, perfusion strategy)
- Non-resected primary tear \((p = 0.05) \)
- Marfan syndrome \((p < 0.001) \)
- Elevated systolic BP at late F/U \((p = 0.008) \)
- Absence of \(\beta \)-blocker \((p = 0.02) \)

Zierer et al.
ATS 2007, 84:479
Impact of late β-blocker use (250 pts) – *J Clin HTN* 2012 (in press):

Impact of late β-blocker use (250 pts) – *J Clin HTN* 2012 (in press):

ATS 2007;83:2122

Impact of late systolic BP control (250 pts) *J Clin HTN* 2012 (in press):

Impact of late BP control (250 pts) *J Clin HTN* 2012 (in press):
Method to determine aortic expansion over time:

- 412 total CT scans:
 - 6 ± 5 scans/patient
 - mean interval: 11 ± 16 mo
 - mean total F/U: 7 ± 6 mo
- 343 CT intervals for analysis

Zierer et al.
ATS 2007, 84:479
Acute Type A Dissection
Method to determine Ao expansion

Descending Aorta

Diaphragmatic Hiatus

Abdominal Aorta

Zierer et al.
ATS 2007, 84:479
• Aortic expansion:
 – 18% (62/343) CT scan intervals, 49% pts

• Onset of growth unpredictable:
 – most often > 1 year postoperatively
 – mean: 59 ± 45 months (maximum: 167 months)

• Independent predictors of aortic growth:
 – Greater aortic diameter \((p < 0.001)\)
 – Elevated systolic BP at late F/U \((p = 0.04)\)
 – Patent false lumen \((p = 0.05)\)
 – Unrelated to initial surgical technique (prox/distal extent)

Median growth rate
\(\text{mm/year}\)

\[\begin{align*}
\text{Desc.} & \quad 6.0 \\
\text{Diaphr.} & \quad 3.8 \\
\text{Abdo.} & \quad 4.1
\end{align*}\]

\(p < 0.001\)

\(Zierer et al.\)
\(ATS 2007, 84:479\)
Interval Between Imaging Studies

<table>
<thead>
<tr>
<th>Aortic Diameter</th>
<th>< 6 mo (n=172)</th>
<th>6–12 mo (n=92)</th>
<th>> 12 mo (n=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (< 35 mm)</td>
<td>5 ± 2%</td>
<td>13 ± 5%</td>
<td>21 ± 7%</td>
</tr>
<tr>
<td>Moderate (35-49 mm)</td>
<td>12 ± 5%</td>
<td>23 ± 9%</td>
<td>31 ± 8%</td>
</tr>
<tr>
<td>Large (≥ 50 mm)</td>
<td>23 ± 12%</td>
<td>34 ± 9%</td>
<td>83 ± 15%</td>
</tr>
</tbody>
</table>

Zierer et al.
ATS 2007, 84:479
• 451 op survivors: 62% FL patent overall
 – 4%: late rupture – FL patent in 94%
 – 8%: distal aortic reoperation – FL patent in 92%
 – 88% no reoperation, no rupture – FL patent in 58%

• Multivariate analysis:
 – FL patent: ↓survival OR=1.70, ↑distal aortic event OR=4.11

Kimura et al.
JTCVS 2015; 149:S91
Impact of FL patency on survival

IRAD Database – TYPE B DISSECTION

Tsai et al.
NEJM 2007;357:349
Total Arch for Dissection
Impact on False Lumen Patency

- 8 studies, 1602 patients – asc/d/hemiarch vs. total arch +/- S-G
 - 5 “total arch is safe”, 3 ↑ mortality with total arch
 - Freedom from reop is similar with hemiarch or total arch at 5-10 years
 - complete FL thrombosis was seen more often with total arch
- Recommend extended resection when entry tear is in the arch
- Total arch may be justified in experienced hands

Beijing Anzhen Hosp.
JTCVS 2014;148:2466
• 78 Type A, DeBakey I dissections at Penn (2005-2008)
 – 42 standard hemiarch, 26 additional descending stent-graft
• At 16 months, open TAA repair performed in 0% stented pts vs.
 11% standard hemiarch group (p=0.08)
• Don’t make the stent-graft too long!

Pochettino et al.
ATS 2009;88:482
Type A Dissection
EXTENT OF DISTAL RESECTION

• Baylor / Texas Heart – 157 pts (2005-2013)
 – 60% unilateral ACP, 41% bilateral ACP (22-24°C)
 – conservative approach to arch replacement (7%)
 – ↑ACP, CPB, and cardiac ischemia → mortality (p<.04 for all)
 – HCA > 30 min associated with CVA (p=.03)

• Conclusion #1: “In this intrinsically complex disease, survival is the most important outcome.”
• Conclusion #2: “A conservative approach to the distal end of the repair can address the primary objectives”
 – prevent rupture, re-establish TL flow, maintain competent AoV

ATS 2015;99:80-7
JTCVS 2015; 148:2123
• Surgical treatment does not cure the generalized disease
• Postoperatively, close medical follow-up mandates:
 – Strict BP control
 – Negative inotropic therapy (β-blockers even if normotensive)
 – Serial (imaging) surveillance (indefinitely)
• Life-long surveillance with radiographic follow-up
Thank you for your attention.