Right Ventricular Outflow Tract Reconstruction with a PTFE Monocusp Valve

Mohineesh Kumar MS, Mark W. Turrentine MD, Mark D. Rodefeld MD, John W. Brown MD

Division of Cardiothoracic Surgery
James Whitcomb Riley Hospital for Children
Indiana University School of Medicine
Disclosures

John W. Brown, MD

- **Cryolife** – Honorarium for Ross AVR presentations

- **Correx Inc.** Board of Directors - equity ownership in start up for making AVB surgical instruments

- **Medtronic** - consulting on PVR products & Proctoring AVB procedures

- **Harpoon Inc.** - SAB – Minimally invasive mitral repair
Background

• Surgical management of the RVOT remains a “weak link” in the treatment of children with CHD.
• Pulmonary valve preservation is always the first objective but is frequently impossible in TOF, PA w/VSD and other complex CHD.
• Acute and chronic PR leads to RV dysfunction and symptoms of RV failure.
• Pulmonary valve reconstruction (PVR) has been problematic in infants for decades and many materials for RVOT reconstruction have been utilized but none proven durable.
Background

- RVOT reconstruction with a PTFE monocusp outflow tract patch (MOTP) was introduced in Japan in 1993 and adopted at our center in 1994
Objective

• Review the short-term and mid-term function and durability of the PTFE-MOTP for several types of RVOT reconstruction
0.1 mm PTFE was introduced for pericardial closure and can be used “off label” to construct a PV monocusp leaflet.

The monocusp leaflet is custom-tailored for each RVOT.

The RVOT transannular patch was constructed with 0.4 mm PTFE material.
Study Groups
(n=259; mean age: 2.8 ± 4.1 years, 1994-2014)

• **Group 1:** Initial repair of TOF or PA/VSD: 170 patients

• **Group 2:** Redo RVOT reconstruction: 37 patients

• **Group 3:** Complex initial repair: 52 patients
 - DORV, TOF with AV canal defect, and others
Control Group

- Initial RVOT reconstruction with bovine jugular conduit
- Chosen to most closely match groups 1 and 3
 - 38 patients (mean age 1.4 ± 1.9 years, range 6 days to 10 years)
Results

• **Mortality**: 7 early deaths and 9 late deaths (16/259: 6%)

• **Follow up**: 229 patients (88%) had follow-up within the last 4 years
 • Mean duration: 11.6 ± 5.7 years

• **Re-operation**: 73 patients (32%) → bovine jugular conduit was used in 56% of reoperations
Pulmonary Stenosis (PS)

- The monocusp itself did not become obstructive.
 - PS when found was infundibular or in the branch PAs
- Reported in 141 patients at most recent echocardiographic follow-up (9.1 ± 5.0 years)
 - Mild PS (<20 mmHg): 99 patients
 - Moderate PS (20-40 mmHg): 24 patients
 - Severe PS (>40 mmHg): 15 patients
Freedom from Re-operation

- **Group 1**: TOF or PA/VSD
- **Group 2**: Redo RVOT reconstruction
- **Group 3**: Complex initial repair
- **Control**: Initial RVOT reconstruction with bovine jugular conduit

Log rank = 0.004
Group 1: TOF or PA/VSD

Group 2: Redo RVOT reconstruction

Group 3: Complex initial repair

Control: Initial RVOT reconstruction with bovine jugular conduit

Log rank=0.035 (groups 1-3)
Log rank=0.079 (all groups)
Conclusions

- Pulmonary valve preservation is always 1st priority and is possible in 70% of pts. with TOF
- PTFE-MOTP is palliative
- PTFE-MOTP is an excellent choice for initial RVOT reconstruction, especially for TOF and PA/VSD with 80% freedom from re-operation at 10 years.
- PTFE-MOTP is not ideal for re-do RVOT reconstruction
- Complex initial repair using PTFE-MOTP is durable but is associated with higher early & late mortality
THANK YOU!
Choice of Valve Replacement

- Bovine Jugular Conduit, 42
- Porcine-stentless, 14
- Porcine-stented, 3
- Homograft, 4
- Transcatheter valve, 4
- Pericardial valve, 3
- New monocusp, 5
PTFE Monocusp Technique
PTFE Monocusp Technique
PTFE Monocusp Technique

© IUSM Med. Illus. Dept. '00
PTFE Monocusp Technique
PTFE Monocusp Technique
PTFE Monocusp Technique (conduit)
Intraoperative TEE
RVOT 6mo. Post-implant: systole
RVOT 6mo. Post-implant: diastole