Rapamycin Prevents Bronchiolitis Obliterans Through Increasing Regulatory B Cells Infiltration in A Murine Tracheal Transplantation Model

Yunge Zhao, Jacob R. Gillen, Akshaya K. Meher, Jordan A. Burns, David A. Harris, Irving L. Kron, and Christine L. Lau*

Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
* Corresponding Author
The following relationships exist related to this presentation:

This study is supported by The Advancing Research in Transplantation Science (ARTS) 2011 Grant Program from Pfizer.
Regulatory B Cells/Bregs

- B220+
- Bregs secrete IL-10 and TGF-beta1.
- IgM+ but IgG- B cells.
Potential Functions of Bregs

Mouse Heterotopic Tracheal Transplantation (HTT) Model

Donor: Balb/c (BC), MHC class I
Recipient: C57BL/6 (B6), MHC class II

Allografts: $H-2^d$ \rightarrow $H-2^b$
Experimental Design

1. **Mouse HTT Model:**

<table>
<thead>
<tr>
<th>Experimental Groups (n=6)</th>
<th>Isograft controls</th>
<th>Allograft+DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Allograft+Rapamycin 5mg/kg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allograft+Rapamycin 10mg/kg/day</td>
</tr>
</tbody>
</table>

* DMSO and Rapamycin was diluted in saline and IP

2. **Luminex Assays of Cytokines and Growth Factors:**

3. **Immunohistochemistry and Densitometric Analysis:**
Effects of Rapamycin on Luminal Obliteration in a mouse HTT Model
Increasing of Cellular Infiltration Post Rapamycin Treatment
Identifying the Infiltrated Cells
Rapamycin Treatment Significantly Increased B Cells Infiltration
IgM+ & IgG-

B220+, IL-10+ & TGF-β1+
IL-10 & TGFβ1
Treatment with Rapamycin Significantly Increased IL-10 and IL-4 Production in Allografts
Treatment with Rapamycin Markedly Increased Foxp3+ Treg Cells in the Allografts
Summary

Rapamycin

Bregs
B220+IL-10+TGFβ1+IgM+IgG-

IL-10/TGFβ1

Tregs
Foxp3+

IL-10

TGFβ1

Bronchiolitis Obliterans
Thank you!