The current practice of invasive mediastinal staging

P. De Leyn, MD, PhD

Chairman Department Thoracic Surgery
University Hospitals Leuven
Belgium
No financial or other relevant disclosures
LEUVEN LUNG CANCER GROUP

Department of Thoracic Surgery
P. De Leyn, W. Coosemans, H. Decaluwé, L. Depypere
Ph. Nafteux, D. Van Raemdonck, H. Van Veer

Department of Pneumology
J. Vansteenkiste, K. Nackaerts, C. Dooms

Department of Radiotherapy
D. De Ruysscher, S. Peeters

Department of Nuclear Medicine
C. Deroose

Department of Radiology
W. Dewever
The current practice of invasive mediastinal staging

• Cases

• When?

• How?

• Take home messages
Case 1

• Male, 60 years
• 35 packyears
• Retro-obstructive pneumonia RUL with lobar atelectasis (cT2a)
• PET-CT
 – Enlarged (1.5 cm) hilar and mediastinal LN’s (10R, 4R, 4L, 7)
 – FDG uptake right paratracheal LN
• cT2aN2(single station)M0
Case 1. Invasive mediastinal staging?

A. Not indicated: induction therapy

B. EBUS/EUS–FNA, if negative resection with systematic nodal dissection

C. EBUS/EUS–FNA, if negative videomediastinoscopy

D. Videomediastinoscopy
Case 2

- Female, 64 years
- 10 packyears
- Peripheral adenocarcinoma LUL (EBUS miniprobe), 3 cm
- PET-CT
 - Positive on tumor, SUV 7
 - Positive on hilar LN (position 10)
 - Negative on mediastinal LN’s
- cT1bN1M0
Case 2. Invasive mediastinal staging?

A. Not indicated
B. EBUS/EUS-FNA
C. Videomediastinoscopy
D. VATS with exploration of station 5 and 6
Case 3

- 55 year old female
- 20 packyears
- Adenocarcinoma right lower lobe, 6 cm
- PET-CT
 - SUV primary Tumour : 10.4
 - N0, M0
- cT2bN0M0
Case 3. Invasive mediastinal staging?

A. Not indicated
B. EBUS/EUS-FNA
C. Videomediastinoscopy
D. VAMLA
Mediastinal nodal staging NSCLC.

ACCP guidelines, Detterbeck et al. Chest 2013; 143/5 7S-37S
Invasive mediastinal nodal staging NSCLC.

Cervical mediastinoscopy
EndoBronchial UltraSonography-FNA (EBUS-FNA)

Esophageal UltraSonography-FNA (EUS-FNA)
ESTS guidelines for preoperative lymph node staging for non-small cell lung cancer

Paul De Leyn a,*, Didier Lardinois b, Paul E. Van Schil c, Ramon Rami-Porta d, Bernward Passlick e, Marcin Zielinski f, David A. Waller g, Tony Lerut a, Walter Weder b
Always explore and biopsy 4R, 4L, 7If present : 2R, 2L

‘Systematic’ instead of ‘selective’ sampling
Surgical mediastinal staging in daily practice

387 cervical mediastinoscopies in 4 hospitals

Three or more LN levels sampled: 39%

Correlation with total numbers/year performed

Smulders et al. Lung cancer 2005;47:249-52
ESTS guideline 2007

PET or PET-CT

Negative (N0)

Positive (N2-N3)

Tissue confirmation

a

Mediastinoscopy

EBUS/EUS (FNA)

b

Negative

c

Positive

Surgical treatment

Multimodality treatment

a: in central tumours, tumours with large LNs, and/or PET N1 disease, invasive staging remains indicated
b: endoscopic techniques are minimally invasive and can be the first choice
c: due to its higher NPV, mediastinoscopy remains indicated

EUS: esophageal ultrasound
EBUS: endobronchial ultrasound
NPV: negative predictive value

De Leyn et al.
Eur J Cardiothorac Surg
2007;32:1-8
Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer†

Paul De Leyna,*, Christophe Doomsb, Jaroslaw Kuzdzalc, Didier Lardinoisd, Bernward Passlickc,
Ramon Rami-Porta, Akif Turna, Paul Van Schilt, Frederico Venutaf, David Waller, Walter Wederk and Marcin Zielinski

a Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
b Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
c Department of Thoracic Surgery, Jagiellonian University Collegium Medicum Krakow, Krakow, Poland
d Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
e Department of Thoracic Surgery, Albert-Ludwigs-University Freiburg, Freiburg, Germany
f Department of Thoracic Surgery, University Hospital Mutua de Terrassa and CIBERES Lung Cancer Group, Terrassa, Barcelona, Spain
g Department of Thoracic Surgery, University Hospital Istanbul, Istanbul, Turkey
h Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Antwerp, Belgium
i Department of Thoracic Surgery, University Hospital, Rome, Italy
j Department of Thoracic Surgery, Glenfield Hospital Leicester, Leicester, UK
k Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
l Department of Thoracic Surgery, Pulmonary Hospital Zakopane, Zakopane, Poland

* Corresponding author. Department of Thoracic Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel: +32-16346820; fax: +32-16346821; e-mail: paul.deleyn@uzleuven.be (P. De Leyn).

Received 3 October 2013; received in revised form 16 December 2013; accepted 20 December 2013
ESTS guideline 2007

PET or PET-CT

Negative (N0)

Positive (N2-N3)

Tissue confirmation

EBUS/EUS (FNA)

Mediastinoscopy

Negative

Positive

Surgical treatment

Multimodality treatment

a: in central tumours, tumours with large LNs, and/or PET N1 disease invasive staging remains indicated
b: endoscopic techniques are minimally invasive and can be the first choice
c: due to its higher NPV mediastinoscopy remains indicated

EUS: esophageal ultrasound
EBUS: endobronchial ultrasound
NPV: negative predictive value

De Leyn et al.
Eur J Cardiothorac Surg
2007;32:1-8
NPV of PET and CT for T1-2N0 NSCLC: A Meta-Analysis

- Meta-analysis (ten studies with a total of 1122 patients)

<table>
<thead>
<tr>
<th></th>
<th>NPV (mediastinal metastasis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1* (Tumour ≤ 3 cm)</td>
<td>94%</td>
</tr>
<tr>
<td>T2* (Tumour > 3 cm)</td>
<td>89%</td>
</tr>
</tbody>
</table>

*Sixth edition of TNM version

Adenocarcinoma histology (Risk ratio: 2.72) and high FDG uptake in primary lesion were associated with greater risk of occult nodal metastasis

Wang et al., Clinical lung cancer 2011;13:81-9
False-negative rate after **PET-CT scan** for mediastinal staging in clinical stage I NSCLC

- Prospective study evaluating ESTS guidelines in operable NSCLC (n=153)
- All patients had dedicated thoracic CT and PET-CT (N0)
- Central tumours were excluded
- When clinical stage I, resection with systematic mediastinal dissection

<table>
<thead>
<tr>
<th>Tumour Size</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1* (≤ 3 cm)</td>
<td>92%</td>
</tr>
<tr>
<td>T2* (> 3 cm)</td>
<td>85%</td>
</tr>
</tbody>
</table>

*Sixth edition of TNM version

Centrally located Tumour?
Risk factors for occult mediastinal metastasis in clinical stage I NSCLC

- Retrospective analysis (n=221)
- Prevalence of N2 disease in patients with clinical stage I NSCLC
- PET and CT negative mediastinum

<table>
<thead>
<tr>
<th>% Occult N2 metastases</th>
<th>Centrally located tumors</th>
<th>Peripherally located tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All tumor sizes</td>
<td>21.6%</td>
<td>2.9%</td>
</tr>
<tr>
<td>0 - 2.0 cm</td>
<td>14.3%</td>
<td>2.9%</td>
</tr>
<tr>
<td>2.1 - 3.0 cm</td>
<td>30%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Lee et al., Ann Thorac Surg 2007;84:177-81
Problems in the current diagnostic standards of clinical **N1** NSCLC

- Retrospective analysis (n=143)
- Prevalence of N2 disease in patients with clinical N1 (CT enlarged LN < 1 cm) NSCLC
- PET not used
- Prevalence N2-3 : 30%

Hishida et al., Thorax 2008;63:526-531
Endosonography for mediastinal staging of clinical N1 NSCLC

- Prospective multicenter study
- Prevalence of N2 disease in patients with clinical N1 (CT enlarged LNs > 1 cm and/or PET positive N1 LNs) NSCLC
- **Prevalence N2 : 24%**
- Sensitivity of EBUS-EUS was only 38%, increased to 73% by adding mediastinoscopy

Dooms et al., Chest 2015;147:209-215
ESTS mediastinal nodal staging algorithm

CT and PET or PET-CT

Mediastinal LN's negative

(n0 and peripheral tumour (outer third of the lung) and tumour ≤ 3 cm)

ACCP C

Mediastinal LN's negative

tissue confirmation: EBUS/EUS or VAM

ACCP B

Mediastinal LN's positive

tissue confirmation: EBUS/EUS

ACCP D

Mediastinal LN's negative

Multimodality treatment

Mediastinal LN's positive

VAM

Mediastinal LN's negative

Mediastinoscopy vs Endosonography for Mediastinal Nodal Staging of Lung Cancer
A Randomized Trial

- Prospective, multicenter randomised study
- Ghent, Leiden, Leuven, Papworth
- Inclusion: NSCLC with indication for invasive staging, based on ESTS guidelines 2007
 - PET positive N1-N2 nodes
 - CT N2 nodes \(\geq 1 \text{ cm} \)
 - Central tumors
- Endpoints: sensitivity to detect N2/N3; rate of futile thoracotomies

Annema et al; JAMA 2010;304:2245-32
Inclusion: NSCLC with indication for invasive staging, based on ESTS guidelines 2007

- PET positive N1-N2 nodes
- CT N2 nodes ≥ 1 cm
- Central tumors

Surgical staging (SS) N=118
Endoscopic staging (ES) (EBUS/EUS-FNA), if negative followed by surgical staging (SS) N=123

Annema et al; JAMA 2010;304:2245-32
Mediastinoscopy vs Endosonography for Mediastinal Nodal Staging of Lung Cancer

A Randomized Trial

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>ES</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>79 (66-88)</td>
<td>85 (74-92)</td>
<td>0.47</td>
</tr>
<tr>
<td>NPV, % (95% CI)</td>
<td>86 (76-92)</td>
<td>85 (75-92)</td>
<td>0.99</td>
</tr>
<tr>
<td>complications</td>
<td>6%</td>
<td>1%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Annema et al; JAMA 2010;304:2245-32
Mediastinoscopy vs Endosonography for Mediastinal Nodal Staging of Lung Cancer
A Randomized Trial

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>ES</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>79 (66-88)</td>
<td>85 (74-92)</td>
<td>0.47</td>
</tr>
<tr>
<td>NPV, % (95% CI)</td>
<td>86 (76-92)</td>
<td>85 (75-92)</td>
<td>0.99</td>
</tr>
<tr>
<td>Complications</td>
<td>6%</td>
<td>1%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SS N=118</th>
<th>ES+SS N=123</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2/N3 detected ; n (%)</td>
<td>41 (35)</td>
<td>62 (50)</td>
<td>0.02</td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>79 (66-88)</td>
<td>94 (85-98)</td>
<td>0.02</td>
</tr>
<tr>
<td>NPV, % (95% CI)</td>
<td>86 (76-92)</td>
<td>93 (84-97)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Annema et al; JAMA 2010;304:2245-32
A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer

(J Thorac Cardiovasc Surg 2011;142:1393-400)
Kazuhiro Yasufuku, MD, PhD, Andrew Pierre, MD, MSc, Gail Darling, MD, Marc de Perrot, MD, MSc

Endobronchial Ultrasound versus Mediastinoscopy for Mediastinal Nodal Staging of Non–Small-Cell Lung Cancer

(J Thorac Oncol. 2015;10: 331–337)
Sang-Won Um, MD, PhD, Hong Kwan Kim, MD, PhD, Sin-Ho Jung, PhD, Joungho Han, MD, PhD, Kyung Jong Lee, MD, Hye Yun Park, MD, PhD, Yong Soo Choi, MD, PhD, Young Mog Shim, MD, PhD
A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer

<table>
<thead>
<tr>
<th></th>
<th>N=153</th>
<th>EBUS</th>
<th>mediastino</th>
<th>p-value</th>
<th>ES+SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2/N3 prevalence</td>
<td>35%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>81 (68-90)</td>
<td>79 (62-87)</td>
<td>NS</td>
<td>92 (81-98)</td>
<td></td>
</tr>
<tr>
<td>NPV, % (95% CI)</td>
<td>91 (84-95)</td>
<td>90 (83-95)</td>
<td>NS</td>
<td>96 (90-99)</td>
<td></td>
</tr>
</tbody>
</table>

Number of false-negative LN stations in parentheses. LN, Lymph node; EBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration.

Kazuhiro Yasufuku, MD, PhD, Andrew Pierre, MD, MSc, (J Thorac Cardiovasc Surg 2011;142:1393-400)
Endobronchial Ultrasound versus Mediastinoscopy for Mediastinal Nodal Staging of Non–Small-Cell Lung Cancer

EBUS was performed under conscious sedation
EBUS-TBNA was superior to mediastinoscopy for mediastinal staging

<table>
<thead>
<tr>
<th></th>
<th>EBUS</th>
<th>Mediastino</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2/N3 prevalence</td>
<td>59%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>88 (78-94)</td>
<td>81 (70-89)</td>
<td>0.04</td>
</tr>
<tr>
<td>NPV, % (95% CI)</td>
<td>85 (73-93)</td>
<td>79 (67-88)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Stage shift adding EUS: 7% (single level N2 EBUS → multilevel N2 by EUS, N2 by EBUS → N3 by EUS)

Table 2 Diagnostic values of procedures in the detection of mediastinal metastasis

<table>
<thead>
<tr>
<th></th>
<th>Group A: EBUS-centred (n=74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic accuracy, % (n/n)</td>
<td>93.2 (69/74) (87.5 to 99.0)</td>
</tr>
<tr>
<td>Accuracy of first procedure*, % (n/n)</td>
<td>91.9 (68/74) (85.7 to 98.1)</td>
</tr>
<tr>
<td>p Value</td>
<td>0.754</td>
</tr>
<tr>
<td>Sensitivity, % (n/n)</td>
<td>85.3 (29/34) (68.9 to 95.0)</td>
</tr>
<tr>
<td>Sensitivity of first procedure, % (n/n)</td>
<td>82.4 (28/34) (65.5 to 93.2)</td>
</tr>
<tr>
<td>p Value</td>
<td>0.742</td>
</tr>
<tr>
<td>NPV, % (n/n)</td>
<td>88.9 (40/45) (75.9 to 96.3)</td>
</tr>
<tr>
<td>NPV of first procedure, % (n/n)</td>
<td>87.0 (40/46) (73.7 to 95.1)</td>
</tr>
<tr>
<td>p Value</td>
<td>0.777</td>
</tr>
</tbody>
</table>
Sensitivity to detect N2/N3 disease.
ESTS mediastinal nodal staging algorithm

CT and PET or PET-CT

Mediastinal LN's negative

- cN0 and peripheral tumour (outer third of the lung) and tumour ≤ 3 cm

Mediastinal LN's negative

- cN1 or central tumour
 - Tumour > 3 cm (mainly Adenoca with high FDG uptake)

 a) tissue confirmation: EBUS/EUS or VAM

 b) Mediastinal LN's negative

Mediastinal LN's positive

- tissue confirmation: EBUS/EUS

 c) Mediastinal LN's positive

 d) Mediastinal LN's negative on EBUS/EUS

 e) VAM

 f) Multimodality treatment

 g) Mediastinal LN's positive

 h) Mediastinal LN's negative

Surgery

Conventional mediastinoscopy vs video-assisted mediastinoscopy (VAM)?
VAM

- Enhanced visualisation
- Bimanual dissection
- Better teaching
- Improved accuracy?
- Less complications?

De Leyn et al,
Multimedia Manual of Cardiothoracic Surgery
10.1510/mmcts.2004.000166;2004
Martin-Ucar et al., Europ J cardiothorac Surg 2004;26:393-395
Improved accuracy of mediastinoscopy
Table 4: Staging values of conventional mediastinoscopy and videomediastinoscopy

<table>
<thead>
<tr>
<th>Author and reference</th>
<th>Type of mediastinoscopy</th>
<th>n</th>
<th>Sensitivity</th>
<th>NPV</th>
<th>Diagnostic accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rami-Porta and Call [37]</td>
<td>CM</td>
<td>148</td>
<td>0.78</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>VAM</td>
<td>137</td>
<td>0.86</td>
<td>0.90</td>
<td>0.94</td>
</tr>
<tr>
<td>Venissac et al. [38]</td>
<td>VAM</td>
<td>240</td>
<td>0.91</td>
<td>NA</td>
<td>0.98</td>
</tr>
<tr>
<td>Lardinois et al. [39]</td>
<td>VAM after induction</td>
<td>24</td>
<td>0.81</td>
<td>NA</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>VAM without induction</td>
<td>195</td>
<td>0.87</td>
<td>NA</td>
<td>0.95</td>
</tr>
<tr>
<td>Leschber et al. [40]</td>
<td>CM</td>
<td>52</td>
<td>NA</td>
<td>0.81</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>VAM</td>
<td>119</td>
<td>NA</td>
<td>0.83</td>
<td>0.88</td>
</tr>
<tr>
<td>Karfis et al. [41]</td>
<td>VAM</td>
<td>87</td>
<td>0.8</td>
<td>0.59</td>
<td>0.85</td>
</tr>
<tr>
<td>Anraku et al. [42]</td>
<td>CM</td>
<td>505</td>
<td>0.92</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>VAM</td>
<td>140</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Cho et al. [43]</td>
<td>CM</td>
<td>222</td>
<td>0.70</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>VAM</td>
<td>299</td>
<td>0.75</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Adapted from Rami-Porta and Call [37].
CM: conventional mediastinoscopy; n: number of patients; NA: not available; NPV: negative predictive value; PPV: positive predictive value; VAM: videoadsisted mediastinoscopy.
Best evidence topic
Overall comparison Videoassisted mediastinoscopy vs. Conventional mediastinoscopy (108 papers 1989-2011)

<table>
<thead>
<tr>
<th></th>
<th>VAM (n=956)</th>
<th>CM (n=5156)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Morbidity</td>
<td>0.83 – 2.9%</td>
<td>0 – 5.3%</td>
<td>NS</td>
</tr>
<tr>
<td>No of LN biopsied</td>
<td>6 – 8.5%</td>
<td>5 – 7.13%</td>
<td>NS</td>
</tr>
<tr>
<td>No LN stations sampled</td>
<td>1.9 – 3.6%</td>
<td>2.6 – 2.98%</td>
<td>NS</td>
</tr>
<tr>
<td>Accuracy</td>
<td>87.9 – 98.9%</td>
<td>83.8 – 97.2%</td>
<td>NS</td>
</tr>
<tr>
<td>NPV</td>
<td>83.0 – 98.6%</td>
<td>81.0 – 98.7%</td>
<td>NS</td>
</tr>
</tbody>
</table>

ESTS recommendation on invasive staging (2014)

We recommend video-assisted mediastinoscopy over conventional mediastinoscopy

- Enhanced visualisation
- Better teaching
- ‘Systematic’ instead of ‘selective’ sampling
- International standardisation of technique
Role of super mediastinoscopies?

• Video-assisted mediastinoscopic lymphadenectomy (VAMLA)
• Transcervical extended mediastinal lymphadenectomy (TEMLA)

Hürtgen et al., Eur J Cardiothorac Surg 2002;21:348-51
Results of VAMLA and TEMLA

<table>
<thead>
<tr>
<th>Author</th>
<th>Procedure</th>
<th>N</th>
<th>NPV</th>
<th>Sensitivity</th>
<th>Side effect</th>
</tr>
</thead>
</table>
| Hürtgen et al, 2002 | VAMLA | 46 | 100% | 100% | Recurrent LN palsy 2.2%
Scarring with impact on subsequent resection: 25% |
| Lescber et al, 2003 | VAMLA | 23 | 100% | 100% | Blood loss > 100ml: 12% |
| Witte et al, 2006 | VAMLA | 144 | NA | 100% | Recurrent LN palsy: 3.4%
Vascular lesions: 2.1%
Mediastinitis: 0.7%
Marked scarring: 19% |
| Yoo et al, 2011 | VAMLA | 108 | NA | NA | Recurrent LN palsy: 3.4% |
| Zielinski et al, 2013 | TEMLA | 256 | 97.4%| 94% | Mortality: 0,3%
Temporary recurrent LN palsy: 2.5%
Permanent recurrent LN palsy : 0,7%
Pneumothorax: 0.7%
Pleural effusion: 1,1% |
VAM

Left recurrent nerve
Role of super mediastinoscopies?
VAMLTA, TEMLA

- Performed in very selected experienced centers
- High accuracy
- Morbidity may be increased (especially 4L)
- Not recommended for routine use
Take-home message

• In peripheral T1a-b tumours preoperative invasive mediastinal staging can be omitted
• In T > 3cm (especially adenocarcinoma with high SUV) invasive staging should be considered
• In central tumours or N1 disease (CT or PET) invasive staging is indicated
• Enlarged or PET positive mediastinal nodes need invasive staging (ACCP B)
• Invasive mediastinal staging (endoscopic or surgical) : ‘systematic’ instead of ‘sampling’
• Sensitivity to detect N2/N3 : EBUS/EUS = VAM
• Start with EBUS/EUS : less invasive, less costs, restaging issue
• Confirmatory VAM after negative EBUS/EUS
 – NPV over 95%
 – Allows nodal dissection in experienced hands
Choice of invasive staging technique is dependent on local availability and expertise

Each center should analyse its own results